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Vaccine safety studies are increasingly conducted by using administrative health databases and self-controlled

case series designs that are based on cases only. Often, several criteria are available to define the cases, which

may yield different positive predictive values, as well as different sensitivities, and therefore different numbers of

selected cases. The question then arises as to which is the best case definition. This article proposes new meth-

odology to guide this choice based on the bias of the relative incidence and the power of the test. We apply this

methodology in a validation study of 4 nested algorithms for identifying febrile convulsions from the administrative

databases of 10 French hospitals.We used a sample of 695 children aged 1month to 3 years whowere hospitalized

in 2008–2009 with at least 1 diagnosis code of febrile convulsions. The positive predictive values of the algorithms

ranged from 81% to 98%, and their sensitivities were estimated to be 47%–99% in data from 1 large hospital. When

applying our proposed methods, the algorithm we selected used a restricted diagnosis code and position on the

discharge abstract. These criteria, which resulted in the selection of 502 cases with a positive predictive value of

95%, provided the best compromise between high power and low relative bias.

administrative data; bias; febrile convulsions; pharmacoepidemiology; positive predictive value; power; vaccines

Abbreviations: ICD-10, International Classification of Diseases, Tenth Revision; PMSI, Programme de Médicalisation des

Systèmes d’Information; PPV, positive predictive value; SCCS, self-controlled case series.

Drug safety studies are increasingly based on information
from large computerized health databases (1–11). Medical
administrative databases represent low-cost and extensive
sources of information on large populations. Hospital data-
bases allow efficient counting of cases with events resulting
in hospitalization. With linked hospital and prescription or
health claim databases, association studies of adverse drug
reactions may be undertaken. In this context, data accuracy
is emerging as an important issue (12–24).

Because drug safety events are rare, commonly used designs
for assessing the relationship between drug exposures and
adverse events are case-control studies or studies based on
cases only, notably the self-controlled case series (SCCS)
(25, 26). The SCCS model was initially proposed and used to

study vaccine adverse effects (4, 27–37) (see the recent review
by Weldeselassie et al. (38)) but has since been applied to a
wider range of drugs (39–49). One advantage of the SCCS
model is that time-constant confounding factors are implicitly
adjusted, this feature being crucial when drug exposure data
are extracted from administrative databases in which only par-
tial information on risk factors is available or in the presence
of confounding by indication. Besides confounding, there are
other potential sources of bias in epidemiologic studies, notably
misclassification of the disease outcome. This has been exten-
sively investigated for case-control studies (50–54) but not yet
for SCCS studies.

In this article, we focus on case ascertainment from hospital
databases in the context of SCCS studies of vaccine safety.
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Often, several criteria are available to define the events,which,
when evaluated against a “gold standard,” may yield differ-
ent positive predictive values (PPVs). These definitions may
have different sensitivities and may yield different numbers
of cases. The question then arises as to which event definition
criterion is best. We propose new methodology to guide this
choice. We consider the impact of false positives on the esti-
mationof relative incidence inSCCS in termsof bias andpower.
Then, we report the results of a French validation study in which
information recorded in administrative hospital databases was
compared with that recorded in medical charts. We chose feb-
rile convulsions among young children as the event of interest
because they are known to be induced occasionally by some
vaccines. Finally, we describe several case selection algo-
rithms, assess their properties, and compare their merits.

MATERIALS ANDMETHODS

The SCCSmodel

For simplicity, we consider the relative incidence ρ of an
acute adverse event such as febrile convulsions occurring in
the presence or absence of recent vaccination, in which recent
vaccination is defined by a single risk period of length e1 (55).
Additionally, it is assumed that all subjects are observed for
the same period of time, and that they share the same con-
stant background incidence. The observation period that is
not part of the risk period is the control period, of length e0.
For all vaccinated individuals, the proportion of the observa-
tion period at risk is r = e1/(e1 + e0). For simplicity, we ignore
age effects.
The SCCS analysis is conditional on the total number of

events observed during the observation period for each indi-
vidual. Suppose that n0 + n1 events arise in vaccines, where
n0 is the number of events occurring in the control period,
and n1 is the number of events occurring in the risk period.
Maximum likelihood estimation of ρ involves only vacci-
nated individuals and, in the present scenario, takes the fol-
lowing simple form (Web Appendix 1, available at http://aje.
oxfordjournals.org/):

ρ̂ ¼ n1e0
n0e1

:

Estimates are obtained under the assumption that case assess-
ment is perfectly accurate, and maximum likelihood estima-
tors are therefore asymptotically unbiased.

Misclassification bias

Now we assume that, in addition to n0 and n1 true events
arising as before (with relative incidence ρ between risk and
control periods), there are alsom0 andm1 false positive events,
which we will call pseudoevents, arising in the control period
and the risk period, respectively. We shall assume that these
pseudoevents arisewith a relative incidence θ between the risk
andcontrolperiods. So, if thepseudoevents areunrelated to the
vaccine, θ = 1.

Maximum likelihood applied to these data yields an asymp-
totically unbiased estimate

~̂ρ ¼ ðn1 þ m1Þe0
ðn0 þ m0Þe1

of the parameter

~ρ ¼ ρPPV0 þ θð1� PPV0Þ; ð1Þ

where PPV0 denotes the positive predictive value of events in
the control period (Web Appendix 2). In particular, if

1 � θ � ρ; ð2Þ

then

1 � θ � ~ρ � ρ:

Asa result,when there is no associationbetween thevaccine and
trueevents (ρ = 1), thentheestimator isunbiased,becausefrom
equation 2, ~ρ ¼ 1 as well. Equation 1 leads to the following
expression for the relative bias in the relative incidence induced
by the presence of false positive events:

~ρ� ρ

ρ
¼ ð1� PPV0Þðθ � ρÞ

ρ
: ð3Þ

Often, equation 2 can be assumed to hold, in which case the
inclusion of pseudoevents biases the estimated relative inci-
dence away from its true value ρ and toward 1. When θ = ρ,
so that the vaccine is equally associated with the occurrence
of pseudoevents and true events, then ~ρ ¼ ρ, and ρ is cor-
rectly estimated. However, ~ρ is biased even when θ = 1, that
is, when pseudoevents arise at the same rate in the risk and
control periods. Assuming that θ = 1 and that PPV0 is known,
one can correct the estimate of ρ by using the equation

ρ ¼ ~ρ� ð1� PPV0Þ
PPV0

ð4Þ

from equation 1 and applying it to ~̂ρ to get an estimate ρ̂. It
might be easier to obtain the overall PPV among all individ-
uals, PPVov (Web Appendix 2). When r is small, as is often
the case in vaccine studies, then PPV0 and PPVov take similar
values. Otherwise, one can correct the estimate of ρ, still assum-
ing θ = 1, based on PPVov (Web Appendix 2). Finally, cor-
rected confidence intervals for ρ can be derived by means of
the delta method or by the inverse transformation in equa-
tion 4 applied to the confidence bounds for ~ρ. With the delta
method, one can additionally take into account the uncer-
tainty in the PPV estimate (Web Appendix 3).

Tradeoffs between power and bias

Increasing the PPV to exclude pseudoevents may result in
the exclusion of true events; therefore, in certain circumstances,
higher power may be achieved with lower PPV. Thus, when
several algorithms to select events are assessed in terms of
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PPVs, one may consider the power of the test of no associa-
tion in addition to the bias as a criterion to guide the choice of
the algorithm that will be used to conduct the SCCS analysis.

In the presence of pseudoevents, the test that is performed
is that of H0: ~ρ = 1. Assuming θ = 1, or more generally equa-
tion 2, ρ = 1 if and only if ~ρ ¼ 1. For simplicity, we investi-
gate the 1-sided test of H0: ~ρ ¼ 1 versus H1: ~ρ> 1 (a 2-sided
alternative hypothesis could also be considered). The power
at significance level αwith n total events (true events and pseu-
doevents) in vaccinees is

Pðn;PPV0; ρ; θÞ

¼ 1� Φ
Zα

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rð1� rÞp � ffiffiffi

n
p ð~π � rÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

~πð1� ~πÞp
 !

;
ð5Þ

where Φ is the cumulative distribution of the standard normal,
Zα is the 100(1 – α) percentile of the standard normal, and

~π ¼ ~ρr
~ρr þ 1� r

is a function of ρ, PPV0, and θ (Web Appendix 4). In PPV
assessment studies, the total number of events (including both
true events and pseudoevents), m, is usually available, as well
as PPVov. Assuming a short risk period (so r is small), it is
then possible to substitute mp for n in equation 5 (P being the
vaccine coverage) and PPVov for PPV0. Alternatively, PPV0

can be expressed in terms of PPVov (Web Appendix 2). Thus,
the power curve may be obtained for different values of ρ
and θ.

It is important to note that higher powers do not necessar-
ily correspond to larger n values or to smallerPPV0. For exam-
ple, suppose that θ = 1, ρ = 3, and r = 0.05, and consider the
3 power values, 90%, 80%, and 60%. Equation 5 then makes
it possible to derive the number of events in vaccinated indi-
viduals n to achieve these fixed powers as a function of PPV0.
Figure 1 displays 3 pairs (PPV0, n) achieving these power val-
ues and ranked according to them as pair 1, pair 2, and pair
3. Ranking them according to thePPV0 or to nwould produce
different ordering. In this example, a high PPV0 of 90%
requires 67 vaccinated cases to achieve 80% power (pair 2). A
much less specific case definition, with PPV0 of 55%, requires
more cases (n = 77) to achieve a much smaller power (60%,
pair 3), whereas a slightly lower PPV0 (85%) requires two-
thirds more cases (n = 111) to achieve the best of the 3 powers
(90%,pair 1).Consequently, it is possible that, in certain settings,
higherpowermaybeachievedwithacasedefinitionwith lower
PPV. Thus, power criteria might lead to a different algorithm
ranking from that obtained according toPPV0 alone orn alone.
We propose that both the relative bias (which increases as
PPV0 decreases) and the power be considered in selecting an
algorithm.

We explore these ideas by using a validation study that
aimed to estimate the accuracy of febrile convulsion event
selection from a French hospital administrative database and
by constructing optimized selection algorithms.

Collection of administrative data in France

Inspired by the American diagnosis-related group model
(56), the French established the collection of medical admin-
istrative data through the Programme de Médicalisation des
Systèmes d’Information (PMSI) in 1991 (57) and extended it
in 1997 to all French health care facilities (58). Initially designed
to analyze hospital activity and contribute to the strategic devel-
opment of facility plans, it has become an instrument of finan-
cial management. Since 2008, each hospital’s budget (for all
public and private hospitals) depends entirely on the medical
activity recorded in this database (59), which compiles dis-
charge abstracts for everyadmission. Information in these abstracts
includes both administrative data (age; sex; postal code of res-
idence; year, month, and type of admission; year, month, and
type of discharge; and facility status) and medical data. Diag-
noses identified during admission are coded according to the
International Classification of Diseases, Tenth Revision (ICD-
10). The condition involving the greatest use of resources dur-
ing hospitalization is recorded as themain diagnosis,with other
diseases listed as associated diagnoses (60). Administrative
data collection rules are decided by the government and applied
nationally. Each facility produces its own standardized data,
which are then anonymized and compiled at the national level.
These data have already proven to be useful in estimating the
incidence or prevalence of cancers and some medical proce-
dures in France (61–66). They are now linked to the national
health insurance claims in a single database, the Système
National d’Informations Inter Régime d’Assurance Maladie
(67, 68), which offers new prospects for national pharmaco-
epidemiology studies (69).
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Figure 1. Thenumberof vaccinated cases required to achieve a power
of 60%, 80%, or 90% (1-sided test, 5% nominal type I error risk). The
relative incidence of pseudoevents is θ=1, the relative incidence is ρ= 3,
and the proportion of the observation period at risk is r = 0.05. The
numbers in parentheses are the positive predictive values for events in
the control period followed by the number of events required in vacci-
nated individuals.
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The study population

A 2-step procedure was followed. First, to select the hos-
pitals, anonymous administrative data from all hospitals in the
3 French administrative areas of Bas Rhin, Côte-d’Or, and
Doubswere obtained from thenational database. These included
all hospitalizations of children between 1 month and 3 years
of age with at least 1 diagnosis of febrile convulsions (ICD-
10 code R56.0 or R56.8), whatever its position on the dis-
charge abstract (principal diagnosis or associated diagnosis)
whowere dischargedbetween January 1, 2008, andDecember
31, 2009. We kept only hospitals with at least 5 hospitaliza-
tions, resulting intheselectionof10publichospitals, including
3 university hospitals (in Besançon, Dijon, and Strasbourg,
France). In the second step, we constituted the study sample
by extracting the hospitalizations from the “local” adminis-
trative database of each of these 10 hospitals to collect named
patient data for medical chart review.

Algorithms for identifying febrile convulsions

Algorithms for identifying febrile convulsions were con-
structed fromtheavailablevariables, includingage, sex, length
of stay, and diagnoses and procedures. We were interested in
identifying cases for SCCS analyses and thus sought a good
PPV. However, for power considerations, we also needed to
select enough cases, so we measured the sensitivity of our algo-
rithms.Thiswasdonebyusing local resourcesavailable inDijon,
France. The following 3 operating characteristics were then
assessed: the PPV, sensitivity, and number of cases. The vali-
dation study involved the consultation of medical records and
was approved by the national data protection authority (Com-
mission Nationale de l’Informatique et des Libertés).

Estimation of the PPV

The PPV corresponds to the probability that hospitalization
with a diagnosis code of febrile convulsions in the adminis-
trative database is indeed related to a febrile convulsion. The
medical record was considered to be the gold standard. The
events selected from the administrative data in each of the 10
hospitals were compared with the data from the matching med-
ical records. This comparison was made by using a validation
sheet and reading the following components of the medical
record: discharge letters (to referring and primary care physi-
cians), nursing records, hospital reports, andprocedure reports
(particularly for radiology). In case of any doubt regarding the
interpretation of diagnoses, the opinion of an expertwas sought.
The truepositiveswere thehospitalizations forwhichfebrile

convulsions were identified both in the administrative abstracts
and the corresponding medical records. False positives were
febrile convulsions recorded in the administrative abstracts that
were not identified as such in the patients’medical records.

Estimation of the sensitivity

Sensitivity is the probability that administrative data cor-
rectly identify hospitalizations for febrile convulsions. The
registry of convulsion cases established by the pediatric emer-
gency department of Dijon University Hospital (Dijon, France)

was considered to be the gold standard. Therefore, the estima-
tion of sensitivity was calculated from Dijon databases only.
Inpatient data in this computerized registry were linked to the
administrative database by using the following variables: first
name, last name, and date of birth. The true positives were hos-
pitalizations for which the febrile convulsionwas identified both
in the administrative database and in theDijon registry. The false
negatives were the hospitalizations listed in the Dijon registry
of febrile convulsion cases but not reported in the administrative
database.

Regression models to identify factors associated with

false positives

Amultivariable logistic regression model was used to esti-
mate how the probability of a false positive depended on the
patient’s characteristics. The model was assessed by using data
fromeachof the10hospital data sets forwhich the“true” status
was known from the medical records. All events identified as
positivewere retrieved from the administrative database.Among
these subjects, the binary response variable was assigned the
value of 1 (false positive) or 0 (true positive). The independent
variables included in thismodelwereyearof admission, season,
hospital type (university or nonuniversity hospital) and admin-
istrative area, admission in an emergency department, length
of hospital stay, age (considered in broad categories), diagnoses
(code and type, main or associated) of febrile convulsions, pre-
vious neurological diseases (coded in the current or in a previous
hospitalization), and procedures such as magnetic resonance
imaging, tomodensitometry, or electroencephalography.

Selection of the algorithm

Different algorithms were proposed based on the variables
selected by the regression model as significantly associated
with a decrease in the rate of false positives. For all of these
algorithms, PPVand sensitivity were estimated.We also derived
thepower functions and relativebiases foreachcandidate algo-
rithmunder different scenarios. Finally,we selected an algorithm
combining good power and low bias. The sensitivity analysis
provided further insight into the performanceof these algorithms.

RESULTS

Algorithms, PPV, and sensitivity

In 2008 and 2009, 695 hospitalizations of children between
the ages of 1 month and 3 years with at least 1 diagnosis code
of febrile convulsions (ICD-10 code R56.0 or R56.8) in any
position on the discharge abstract occurred in the 10 hospi-
tals. The corresponding PPVwas 80.72%. Two-thirds of false
positives were nonfebrile convulsions and one-third were not
convulsions at all. The registry of convulsion cases estab-
lished by the pediatric emergency department of Dijon Uni-
versity Hospital identified 137 hospitalizations for febrile
convulsions during the same period, allowing us to estimate
a sensitivity of 98.54% for this selection.
By using the multivariable logistic regression model, we

selected 4 variables associated with an increase in the proba-
bility of false positives (Table 1).When the discharge abstract
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included ICD-10 codeR56.8, the oddsof being a false positive
were about 30 times higher than when ICD-10 code R56.0
was used alone. When the diagnosis of febrile convulsions
was not coded as the main diagnosis, the odds of being a false
positive were approximately 4 times higher. When the child
was not admitted to an emergency department, the odds of
being a false positivewere 25 times higher.When a procedure
for neurological investigation was performed (magnetic res-
onance imaging, tomodensitometry, or electroencephalogra-
phy), the odds of being a false positive were approximately
4 times higher.

Different algorithms were considered, involving the vari-
ables selected by the regressionmodel. Thefirst algorithm (the
original selection) selects all hospitalizations with at least 1
diagnosis of febrile convulsions (ICD-10 code R56.0 or R56.8),
whatever its position on the discharge abstract. The second algo-
rithm relies only on the ICD-10 code R56.0 as a main diag-
nosis. The third algorithm uses this main diagnosis ICD-10
code R56.0 plus admission to an emergency department. The
fourth algorithm adds a neurological investigation to the selec-
tion criteria of the third algorithm. For all of these algorithms,
PPV and sensitivity were estimated (Table 2). As expected, the
PPV increased as the sensitivity decreased. The decrease in sen-
sitivity (ofapproximately40%) isparticularlynoticeablebetween

the third and fourth algorithms, although the PPV increased
by only 2%.

Power and relative bias

We calculated the power function from equation 5 for all
4 algorithms. We used P = 0.9, the number of cases m from
Table 2, and r = 0.05 or r = 0.25. We considered θ = 1, θ =
1 + (ρ – 1) / 2, which satisfies equation 2, and θ = 1.3, which
does not. Power functions are shown in Figure 2. PPVs and
sample sizes (m) used in the power calculations are those
obtained from the PPV assessment study in 10 hospitals from
the 3 French administrative areas of Bas Rhin, Côte d’Or,
and Doubs in 2008–2009.

The power is smaller for r = 0.05 than for r = 0.25. The power
functions for algorithms 2 and 3 are always virtually equal.
Algorithm 1 always shows the largest power, and algorithm
4 always shows the smallest power. For scenario θ = 1, there
is little difference among algorithms 1, 2, and 3. The differ-
ences appear for the 2 other scenarios. Finally, as expected,
the type I error (ρ = 1) is controlled in scenarios θ = 1 and
θ = 1 + (ρ – 1) / 2, where the hypothesis in equation 2 is met,
but not in scenario θ = 1.3.

Weobtained the relativebias (equation3) foreachalgorithm
under the same scenarios for θ as for the power. Figure 3
indicates a clear hierarchy among the 4 algorithms, with algo-
rithm 1 resulting in a markedly worse relative bias for all sce-
narios. The relative bias is less than 10% for the true value
ρ≤ 2, which was the larger value that was considered and
increases with ρ. PPVs used in the relative bias calculations
are those obtained from the PPV assessment study in 10 hos-
pitals in the 3 French administrative areas of Bas Rhin, Côte
d’Or, and Doubs in 2008–2009.

Thus, algorithms 1–3 provide the best power; within these,
algorithms 2 and 3 have the highest PPVs and hence the lowest
bias. Algorithm 2 is the simplest of the 3, and is therefore our
best choice.

DISCUSSION

Vaccine safety studies based on automated administrative
data are cheaper and quicker to complete than studies using
medical records. When appropriate, the choice of the SCCS

Table 1. Logistic Regression Model to Identify Factors Associated

With False Positive Febrile Convulsion Diagnoses in 10 Hospitals in

the French Administrative Areas of Bas Rhin, Côte-d’Or, and Doubs,

2008–2009

Variable OR 95% CI P Value

Diagnosis of febrile convulsiona 30.7 16.9, 55.8 <0.0001

Admission into emergency
department (no/yes)

25.0 6.6, 95.5 <0.0001

Febrile convulsion coded as main
diagnosis (no/yes)

3.7 1.8, 7.6 <0.0001

Neurological investigation
performed (no/yes)

4.1 2.1, 8.0 <0.0004

Abbreviations: CI, confidence interval; OR, odds ratio.
a Defined as International Classification of Diseases, Tenth Revision,

code R56.8 or R56.0.

Table 2. Estimation of the Positive Predictive Value and Sensitivity of 4 Algorithms to Identify Febrile Convulsions

in 10 Hospitals in the French Administrative Areas of Bas Rhin, Côte-d’Or, and Doubs, France, 2008–2009

Algorithm
No. of
Cases

Sensitivity,
%a 95% CI

No. of
Cases

Positive Predictive
Valueb

95% CI

1 170 98.54 96.53, 99.99 695 80.72 77.79, 83.65

2 137 89.05 83.82, 94.28 502 95.02 93.12, 96.92

3 131 86.86 81.20, 92.52 490 96.33 94.67, 97.99

4 71 47.45 39.09, 55.81 229 98.25 96.55, 99.95

Abbreviation: CI, confidence interval.
a Sensitivity was computed from 137 cases in the Dijon University Hospital database. Registry of the pediatric

emergency department was considered the “gold standard.”
b Positive predictive value was computed from the 10 hospital databases. Medical records were considered the

gold standard.
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design contributes to this effectiveness. However, a prelimi-
nary question is the ability of hospital discharge databases to
select true cases and the ability of the SCCS analysis to cope
with false positives.
In this study, we used the French Système National d’In-

formations Inter Régime d’AssuranceMaladie, which includes
linked claim databases and hospital discharge (PMSI) data-
bases at the national level, and explored the properties of case
identification from the latter. In the future, SCCS studies could
be conducted in this framework. We defined and compared
algorithms to identify febrile convulsions from the PMSI, and
we investigated the behavior of the SCCS according to the
resulting PPVs.
Our results show that automated administrative hospital

databases have the potential to identify cases of febrile con-
vulsions in childhood with high PPV. Our estimated PPVs
ranged from 81% to 98% according to the algorithm, which
compares rather favorablywithvalues obtained elsewhere (70,

71). We were able to explore factors that predict the occur-
rence of a false positive and found that nonadmission to the
emergency department, a criterion also considered by Huang
et al. (71), was a good predictor. This and the inclusion of
ICD-10 diagnosis code R56.8 were the most strongly associ-
ated factors.We also found, to a lesser extent, that the absence
of a neurological investigation was also predictive of being a
false positive, as well as nonrestriction to the main diagno-
sis. These considerations led to the formulation of 4 nested
candidate algorithms; the more restrictive the algorithm, the
better it was in terms of PPV and the lower the sensitivity and
the number of events.
We propose that the selection of the algorithm should be

based on a compromise between bias and power, because
including more events, even polluted with false positives, can
increase the power. Algorithm 4 resulted in the lowest power,
whereas the first 3 algorithms showed comparable power,
with algorithms 2 and 3 indistinguishable under all scenarios.
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Figure 2. Power function of the self-controlled case series test (1-sided, 5% nominal type I error risk) by relative incidence ρ in detecting an asso-
ciation between vaccination and hospitalization for febrile convulsions when the cases include false positives. Case definition algorithm 1 (solid
line), algorithms 2 and 3 (dotted line), and algorithm 4 (dashed line). Algorithms 2 and 3 are indiscernible. The relative incidence in pseudoevents
is θ = 1 in the top row, θ = 1 + (ρ – 1) / 2 in the middle row, and θ = 1.3 in the bottom row. The proportion of the observation period at risk is r = 0.05 in
the left column and r = 0.25 in the right column. The proportion of vaccinated population is P = 90%. The bottom horizontal straight line indicates
the 5% level.
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Algorithm1produced thegreatest relativebias.Overall,defining
febrile convulsions on the basis of themain ICD-10 diagnosis
code R56.0 (in algorithm 2) seemed to provide a good com-
promise in our setting.

Our power and bias criteria provide a novel framework for
guiding the choice of algorithm,which is directly related to the
aims of the investigation, namely estimation of the relative
incidence and hypothesis testing. These quantities involve the
PPVand the numberof cases, but not (independently) the sen-
sitivity, which, as it turns out, is not essential for this purpose,
though it influences the PPV (72). In our study, we were able
to estimate the sensitivity of the 4 algorithms. The results shed
further light on their performance. The small gain in PPV
from algorithm 4 is achieved at the cost of drastic reductions
in the sensitivity and number of events selected.

The exact compromise to be struck between bias and power
will depend on circumstances. Power is secondary when large
numbers of cases are available. It may be more of an issue
when the adverse event of interest is rare or not easily diag-
nosed or if its diagnosis relies on a severity threshold. These
considerations arose in Farrington et al. (1), who used contrast-
ing analyses based on febrile convulsions or aseptic menin-
gitis (1,062 events, relative incidence = 1.51) and on aseptic
meningitis alone (7 events, relative incidence = 38.1) to study
the association between themeasles, mumps, and rubella vac-
cine with the Urabe mumps strain and aseptic meningitis. In
this study, not all febrile convulsions were caused by aseptic
meningitis, but conversely, not all children with convulsions
caused by aseptic meningitis underwent lumbar punctures.

In our theoretical calculations, we allowed for the possibil-
ity that pseudoevents might be associated with the event. If this
association does not exist or is less than the association between
true events and the vaccine (equation 2), the relative incidence
will be conservativelyestimated, and the type I error probability

will be controlled even if pseudoevents are included. When
an association between pseudoevents and the vaccine can be
ruled out, it is possible, in principle, to correct the relative
incidence estimate.

Our analysis has limitations. The validation study was
limited to 10 public hospitals in 3 French geographical areas
for the PPV assessment and to 1 public hospital for the sen-
sitivity assessment, which raises the question of whether its
results can be extrapolated to all areas and to all types of hos-
pital. The theoretical study was restricted to a simple scheme
with no age effect and 1 risk period, which made it possible
to focus on the key issues and to formulate a framework to
compare event definition algorithms. Overall, our findings give
us confidence in the validity of SCCS analyses in the presence
of false positive events.
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