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Flexible modeling of disease activity measures improved prognosis
of disability progression in relapsingeremitting multiple sclerosis
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Abstract
Objectives: To illustrate the advantages of updating time-varying measures of disease activity and flexible modeling in prognostic clin-
ical studies using the example of the association between the frequency of past relapses and occurrence of ambulation-related disability in
multiple sclerosis (MS).

Study Design and Setting: Longitudinal population-based study of 288 patients from Burgundy, France, diagnosed with
relapsingeremitting MS in 1990e2003. The end point was a nonreversible moderate MS disability (European Database for Multiple Scle-
rosis score �3.0 derived from Extended Disability Status Scale). Alternative time-varying measures of attacks frequency included (1) con-
ventional number of early MS attacks in the first 2 years after diagnosis; and two new measures, continuously updated during the follow-up;
(2) cumulative number of past attacks; and (3) number of recent attacks, during the past 2 years. Multivariate analyses used Cox propor-
tional hazards model and its flexible generalization, which accounted for time-dependent changes in the hazard ratios (HRs) for different
attack frequency measures.

Results: HRs for all measures decreased significantly with increasing follow-up time. The proposed updated number of recent attacks
improved model’s fit to data, relative to alternative measures of attack frequency, and was associated with a statistically significantly
increased hazard of developing ambulation-related MS disability in the next 2 years during the entire follow-up period.

Conclusion: Updated measures of recent disease activity, such as frequency of recent attacks and modeling of their time-dependent
effects, may substantially improve prognosis of clinical outcomes, such as development of MS disability. � 2015 Elsevier Inc. All rights
reserved.
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1. Introduction

Modern clinical and epidemiological studies increas-
ingly rely on longitudinal designs with repeated measure-
ments of prognostic and risk factors during the follow-up,
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which imply more complex data structures. In the past
decade, many studies have addressed various analytical
challenges encountered in longitudinal studies [1e3]. Cox
proportional hazards (PH) model, the most popular statisti-
cal model for the analyses of clinical prognostic studies [4],
permits modeling repeated prognostic factor measurements
through time-varying covariates [5]. Time-varying covari-
ates are necessary to represent any information on prog-
nostic factors or exposures that becomes available only
during the follow-up, to avoid important ‘‘immortal time’’
or ‘‘survival’’ biases [6e8]. They should be also used to
model those prognostic factors that change values during
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What is new?

Key findings
� We demonstrate how the results of longitudinal clin-

ical studies of disease progression can be enhanced
by both (1) updating prognostic factors during the
follow-up and (2) flexible modeling of changes over
time in their prognostic ability. These genericmethod-
ological issues are illustrated in the context of a longi-
tudinal study of the evolution of relapsingeremitting
multiple sclerosis (MS), where prognosis of disability
was improved by (1) using a time-varying indicator of
the updated number of recent attacks, in the last
2 years, and (2) accounting for a gradually decreasing
strength of its impactwith increasing disease duration.

What this adds to what was known?
� From the methodological perspective, our analyses

and results add empirical evidence of the potential
benefits of flexible analyses of time-varying covari-
ates and time-dependent effects in clinical prognostic
studies. Although similar advantages have been
demonstrated, usingmostly simulated data, in statisti-
cal literature, the use of flexible statistical models in
real-life clinical research is still rare. From the sub-
stantive perspective, we have provided new insights
into the dynamics of the evolution of relapsinge
remitting MS. Published studies of MS typically use
only early measures of disease activity, such as the
number of attacks in the first 2 years or the interval
between the first two attacks, and assume that their
effects are constant during the entire disease evolu-
tion. In contrast, we demonstrate that updating the
number of recent attacks during follow-up signifi-
cantly improves prognosis of development of MS
disability in the next 2 years, across the follow-up
period, although the earlymeasuresof disease activity
quickly lose their associations with the hazard.More-
over, we show that the short-term risks of disability
evolution associatedwith increased recent disease ac-
tivity aremuch higher than reported bymost previous
studies that used conventional statistical models.

What is the implication and what should change
now?
� Our substantive findings are relevant for the clinical

management of MS patients over time, implying that
a continuous reassessment of the recent disease activ-
ity may improve prognosis and help adapting the
treatment to the current needs of individual patients.
On the other hand, our generic methodological
conclusions should contribute to an increased use of
flexible modeling of time-varying covariates in a
wide range of clinical prognostic studies.
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the follow-up, especially if the updated, more recent values
are expected to be prognostically more relevant than the
baseline values [9]. Several recent clinical epidemiology
articles have illustrated the potential advantages of
time-varying covariates and called for their more frequent
use in prospective or retrospective cohort studies [10e13]
and even in cross-sectional analyses [14]. However, many
clinical studies with repeated measurements of prognostic
factors do not use time-varying covariates, possibly due
to the uncertainty regarding how to accurately model longi-
tudinal changes in the prognostic factor values [9]. This
challenge can be addressed by estimating models with
alternative, clinically plausible representations of a
time-varying prognostic factor, including, for example, its
most recent value and some cumulative measures of past
values, and then comparing the goodness of fit of different
models [13,15].

Furthermore, the accuracy of the results and conclusions
based on the Cox PH model depends on the validity of the
underlying assumptions [5]. In particular, (1) the PH
assumption constrains the estimated covariate effects [haz-
ard ratios (HRs)] to be constant over time, whereas (2) the
log-linearity assumption implies a linear relationship be-
tween each continuous prognostic factor and the logarithm
of the hazard [5]. These conventional assumptions are
seldom tested in clinical prognostic studies [4] and are
often accepted a priori. Yet, several flexible models were
proposed, in statistical literature, to test these restrictive
conventional assumptions, and their applications in prog-
nostic studies revealed frequent, statistically significant
and clinically important violations of both the PH
[16e19] and/or the log-linearity hypotheses [20,21].
Indeed, both assumptions may be simultaneously violated
by the same continuous prognostic factor of mortality, for
example, age at diagnosis in different cancers [22e24] or
albumin in nonesmall-cell lung cancer [25]. Accounting
for such violations of the conventional assumptions may
be essential to both avoid biased estimation and detect a
statistically significant association [20,25,26]. Flexible
modeling of the effects of prognostic factors has been advo-
cated in several methodological articles in major epidemi-
ology journal [16,20,27,28]. However, in spite of high
relevance of, on one hand, (1) modeling of time-varying co-
variates and, on the other hand, accounting for possible vi-
olations of (2) the PH and/or (3) the log-linearity
assumptions; to date, only few prognostic studies have
simultaneously addressed all these issues.

We illustrate the practical importance of the previously
mentioned ‘‘generic’’ methodological considerations in a
prognostic study of the evolution of multiple sclerosis
(MS). MS is the most common chronic disabling disease
of the central nervous system in young adults of Western
countries, with a standardized prevalence of 40 to 200 cases
per 100,000 inhabitants [29,30]. The disease affects mainly
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young women and can lead to a wheelchair dependence and
cognitive decline [31]. Initial disease course involves epi-
sodes of relapsing and remitting (RR) neurologic dysfunc-
tion [32], followed by a progressive phase with slowly
increasing impairment and disability [33,34]. Individual pat-
terns of MS evolution are highly variable [35,36], even if
global disease course is now well described [37]. An accu-
rate description of the role of prognostic factors associated
withMS progression will help better to inform patients about
likely future evolution of their disease, allow the clinicians
to identify the patients who need immune treatments, and
improve the design of new therapeutic trials [38].

Initially, relapsingeremitting form of MS, male gender,
older age at onset, cerebellar and sphincter involvement at
onset, and incomplete recovery after the first MS attack are
all associated with worse disease course [39e41]. In addi-
tion, two measures of early disease activity (1) the number
of attacks in the first 2 years after diagnosis and (2) the
length of the interval between the first two MS attacks were
also suggested to be useful prognostic factors [40,42], but
their actual impact remains controversial [40,42,43], and
it is unclear which has higher prognostic utility [8]. Some
discrepancies in results can be partly explained by
between-studies differences in: patient populations (unse-
lected vs. specialized reference centers) [44], inclusion of
patients with different forms of MS [40,45], definitions of
the beginning of follow-up [46], choice of the specific level
of disability as the end point, and follow-up duration
[47,48]. Finally, the differences between statistical models
used and limitations of some published analyses might also
have led to different results.

Similar to other prognostic studies, most analyses of the
MS evolution rely now on the popular Cox PH model
[48e50]. However, most prognostic studies of MS progres-
sion use only early disease activity measures, in the first
2 years after diagnosis and ignore all information collected
later during the follow-up [51,52]. Yet, continuous reassess-
ment of the frequency of MS attacks during the follow-up
could help to understand the dynamic of the MS evolution
and to improve prognosis. Indeed, we have previously
demonstrated that including, in the Cox PH model, time-
varying covariates representing updated measures of dis-
ease activity improves the accuracy and the power of the
analyses [8].

Furthermore, the effects of different measures of disease
activity on the hazard of MS disability may not be consis-
tent with the conventional PH hypothesis, which implies
that, for example, number of attacks in the first 2 years is
equally useful for prognosticating disease evolution in the
early years of MS course as many years later. On the other
hand, the log-linearity hypothesis would imply that the HR
associated with increasing the number of attacks, for
example, (1) from two to four and (2) from six to eight,
is the same. Both hypotheses may not be consistent with
the true unknown effects of the number of previous attacks
on MS evolution. First, the impact of early disease activity
markers on the MS evolution may decrease with increasing
time since diagnosis [37,48], which would invalidate the
PH assumption. Furthermore, to avoid the potentially
implausible log-linearity assumption, most previous studies
of MS prognosis categorized the number of attacks and the
time between the first two attacks, although imposing the
PH assumption [8,36,39,53]. However, categorization of
quantitative prognostic factors may induce loss of statistical
power and bias in the estimated effects [54]. In addition, to
ensure accurate estimation and tests regarding the effects of
a continuous prognostic factor on the hazard, both the PH
and the log-linearity hypotheses have to be simultaneously
tested and their possible violations have to be accounted
[24,25,55,56].

To address these limitations of previous prognostic
studies, we rely on flexible modeling to assess and account
for possible changes over time in both the values of a
prognostic factor and its impact on the outcome of inter-
est. We then illustrate the potential benefits of flexible
modeling and its ability to yield new clinical insights,
by applying this approach to reassess the role of the fre-
quency of past attacks as a prognostic factor for time to
ambulation-related disability in MS.

2. Methods

2.1. Study population

Study population was derived from the patients followed
either at the University Hospital, in Dijon, France, or by a
neurologist from the Burgundy Multiple Sclerosis Network,
a part of the European Database for Multiple Sclerosis (ED-
MUS) [57,58]. The network includes all the neurologists in
the region of Burgundy and prospectively follows the pa-
tients from the onset of their disease, defined as the first
MS attack. In the analyses, we have included all 288 pa-
tients diagnosed with a confirmed relapsingeremitting mul-
tiple sclerosis (RR-MS), according to the Poser’s
classification [59], diagnosed between January 1, 1990,
and November 15, 2003.

2.2. Data collection

Clinical, biological, radiological, and therapeutic infor-
mation collected at each visit or hospitalization was re-
corded in a standardized MS database [60,61]. For
patients first seen after the disease onset, previous data were
entered retrospectively, based on a structured interview,
which permits identifying each step of MS evolution [62].
The French commission for data protection (Commission
National Informatique et Libert�e) approved the study. All
patients gave written consent to be included in the database.

Individual case reports included demographics, medical
history, biological, electrophysiological and neuroimaging
data, and treatments, as well as the dates of key episodes
in the MS course [relapses, occurrence of the secondary
progressive multiple sclerosis (SP-MS), and of successive
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levels of irreversible disability]. An MS attack was defined
as an acute flair-up of symptoms lasting more than 24 hours
[37]. Only attacks separated by at least 1 month were
counted as separate events [37].

Patient’s disability was scored using the EDMUS
Grading Scale (EGS) [62], a validated ambulatory scale,
which can be easily scored retrospectively based on an
interview. Retrospective EGS scores agree well with the
‘‘gold standard’’ of the Extended Disability Status Scale
scores [62]. EGS scores range from 0 (no neurologic abnor-
mality) to 10 (death fromMS). A disability level was defined
as irreversible if it had persisted for at least 6 months [63].

In our analyses, the end point was defined as the first
occurrence of an EGS score �3, often considered a
threshold of ‘‘moderate disability,’’ corresponding to the
beginning of ambulation-related problems [39,64]. This
disability level was also used as the primary end point in
previous studies of MS evolution [65,66].

2.3. Statistical methods

The statistical methods described in the following can be
easily adapted to other prognostic studies, which involve
time-to-event analyses and repeated over time measures
of some prognostic factors.

2.3.1. Alternative time-dependent measures of MS
attacks frequency

Time-to-event methods were used to investigate time
from the disease onset (first MS attack) to the first occur-
rence of EGS score �3. Follow-up continued until April
2004. Subjects who had an EGS score !3 at their last
follow-up assessment were censored at that time. All multi-
variate models were adjusted for patient’s age at onset and
gender [8].

To account for the temporal relationship between MS at-
tacks and the outcome (EGS score �3) and avoid using in-
formation on the future attacks [8], all models relied on
time-dependent measures of the number of past MS attacks,
updated during the follow-up [8,67]. At time t during the
follow-up, a time-dependent covariate represents the rele-
vant information on the past attacks observed, for a given
subject, only until time t. Thus, the resulting values of
time-dependent covariates for all subjects in the risk set
are comparable and independent of the duration of their
future individual follow-up (after time t).

We estimated four Cox PH models, each using a
different time-dependent measure of the frequency of past
MS attacks. Similar to previous studies [67e70], model
1A focused on the number of early attacks, during the first
2 years of MS evolution. To avoid biased estimation and
include patients followed for less than 2 years, at any time
t ! 24 months, the updated time-dependent measure
counted only those attacks which had already occurred,
until time t, whereas at t O 24 months, all attacks re-
corded in the first 2 years were counted [8]. Thus, for
example, for a patient with consecutive attacks at 0 (MS
onset), 12, 17, and 32 months, the assigned ‘‘number of
early attacks’’ was ‘‘1’’ until 12 months, ‘‘2’’ between
12 and 17 months, and ‘‘3’’ at any time thereafter. Model
1 B was similar except it counted all past attacks, which
occurred during the first 5 years (rather than 2 years used
in model 1A). Model 2 relied on a ‘‘cumulative number of
all past attacks.’’ Accordingly, at any time t during the
follow-up, the corresponding time-dependent measure
represented the total number of past attacks, accumulated
from the disease onset (t 5 0) until current time t. Finally,
model 3 used the time-dependent measure that repre-
sented the continuously updated ‘‘number of recent at-
tacks,’’ which occurred in the two previous years of
follow-up. At t years after the MS onset, the updated
time-dependent ‘‘number of recent attacks’’ represented
the number of attacks observed in the 2-year interval be-
tween (t � 2) and t years of follow-up. Thus, depending
on the temporal variation in a patient’s disease activity,
the values of time-dependent covariate in model 3 could
either increase or decrease from one interval to the next
one, in contrast to nondecreasing functions of time used
in the three other models.
2.3.2. Flexible modeling of time-dependent and nonlog-
linear effects

All models discussed above imposed a priori conven-
tional PH and log-linearity assumptions. To test whether
these assumptions are valid for the effects of the frequency
of past MS attacks, we relied on likelihood ratio tests
(LRT), based on a flexible spline-based extension of Cox’s
model [26,55,71]. For each Cox model of Section 2.3.1, we
estimated a flexible model with the same measure of attacks
frequency. If the PH or the log-linearity hypothesis was
rejected (P ! 0.05 for LRT), we used regression splines
[72,73] to estimate, respectively, the time-dependent func-
tion that described how the effect of a corresponding mea-
sure changes during the follow-up or how the logarithm of
the hazard varies with increasing frequency of attacks
[55,71]. To avoid overfit bias and ensure model parsimony,
the final flexible model included only statistically signifi-
cant time-dependent and/or nonloglinear effects, selected
by the backward elimination procedure, recently adapted,
and validated for flexible modeling of event times [71,74]
(Online Appendix at www.jclinepi.com provides details).
All flexible analyses were implemented with a customized
program in R (R Core Team, Vienna, Austria) language
[71], available on request.
3. Results

3.1. Descriptive statistics

Table 1 summarizes the characteristics of the 288
study participants. Most were women (73.3%), and the

http://www.jclinepi.com


Table 1. Baseline demographic and disease-related characteristics

Characteristics Values

Gender, n (%)
Male 77 (26.7)
Female 211 (73.3)

Age at onset of disease (yr) mean (SD) 32.3 (10.3)
Age at onset of disease in classes, n (%)
!20 30 (10.4)
20e40 189 (65.6)
�40 69 (25.0)

Initial symptoms, n (%)
Isolated optic neuritis 57 (19.8)
Isolated brain-stem dysfunction 48 (16.7)
Isolated dysfunction of long tracts 103 (35.8)
Other symptoms 5 (1.7)
Unknown symptoms 6 (2.1)
Combination of symptoms 69 (23.9)

Number of attacks in the first 2-year mean (IQR) 2.1 (1e3)
Interval between the first and second attack (yr)
mean (IQR)

1.9 (1e2)

Abbreviations: SD, standard deviation; IQR, interquartile range.
The median follow-up time, that is, the time between the disease

onset and the last consultation, was 6.4 years (SD 5 3.7, IQR 3e9).
During the follow-up, 108 patients (37.5%) reached an EDMUS
Grading Scale score equal to or higher than 3.

A

B

Fig. 1. (A) Cumulative number of attacks until the end of year (solid
red curve: median; dotted curves: 25th and 75th percentiles) (B)
Number of attacks in the last 2 years until the end of year (solid
red curve: median, dotted curves: 25th and 75th percentiles). MS,
multiple sclerosis. (For interpretation of references to color in this
figure legend, the reader is referred to the Web version of this article.)
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mean age at MS onset was 32.3 years (standard
deviation 5 10.3 years). Isolated dysfunction of long
tracts was the most frequent symptom at onset (35.8%).

During the first 2 years after the MS onset, the median
number of ‘‘early’’ attacks was 2 [interquartile range
(IQR) 1e3] with the maximum of 11 attacks. There was
a very strong relationship between a higher number of at-
tacks within the first 2 years and a shorter interval between
the first and the second attack (which might have occurred
after 2 years), with the negative Spearman rank correlation
of �0.79 [95% confidence intervals (CI): �0.84, �0.75] for
269 (93.4%) patients who had at least two attacks during
the follow-up. Thus, the number of early attacks, used in
model 1A, accounts well for the variation in the length of
the first interattack interval.

Figures 1A and 1B show how the median and the IQR
of, respectively, cumulative and recent number of attacks
change during follow-up. Both IQRs reflect a substantial
between-patient variation, which is accounted for in our
models 2 and 3 (Section 2.3.1).

3.2. Comparison of the alternative models for the
number of past attacks

Table 2 lists that adjusted HRs for all time-varying
measures of the number of attacks, used in alternative
Cox models, are above 1.0, with the 95% CIs which
exclude 1.0. Thus, all measures of the MS attack fre-
quency are associated with a statistically significantly
accelerated occurrence of an EGS score �3. However,
model 2 and, especially, model 3 fit the data considerably
better than model 1, as indicated by much lower Akaike
information criterion (AIC) values (Table 2). Thus, the
new measure that continuously, during the entire follow-
up, updates the information about the recent attacks, in
the last 2 years, improves considerably the prognosis of
MS evolution relative to the previously used number of
early attacks, in the first 2 years of follow-up. This differ-
ence underlines further the fact that, in the later years of
follow-up, the recent disease activity is more relevant than
the activity observed much earlier, closer to the disease
onset.

On the other hand, the estimates obtained with the con-
ventional Cox PH models are not accurate because the
underlying PH assumption is systematically violated
(P ! 0.05) for all the measures of the attacks frequency
we considered (Table 2). Indeed, the flexible models that
account for time-dependent effects fit the data systemati-
cally much better than the corresponding PH models, with
the AIC values lower by at least 6 points (Table 2). This
pattern of results provides a strong evidence that the asso-
ciations of all attack frequency measures change over time.
On the other hand, the log-linearity hypothesis was never
rejected (all P-values O 0.05) indicating that the risks of
occurrence of an EGS score �3 increase gradually with
increasing attack frequency, across the range of observed
values. Comparison of the AIC values confirms that flex-
ible time-dependent model 3, which relies on the updated



Table 2. Results of different conventional Cox PH models and flexible time-dependent models, with alternative time-varying measures of the
frequency of past MS attacks

Model Measure of the number of MS attacks

Conventional Cox PH model Flexible Cox model

HR (95% CI)a AICb P-valuesc AICb

Model 1A Number of early attacks 1.190 (1.015, 1.395) 1,026.739 0.004 1,018.4
Model 1B Cumulative number of past attacks up to 5 years 1.121 (1.026, 1.226) 1,025.207 0.002 1,015.9
Model 2 Cumulative number of past attacks 1.133 (1.052, 1.220) 1,021.159 0.002 1,011.1
Model 3 Number of recent attacks 1.408 (1.246, 1.592) 1,007.306 0.013 1,001.4

Abbreviations: PH, proportional hazards; MS, multiple sclerosis; HR, hazard ratio; CI, confidence interval; AIC, Akaike information criterion.
a Adjusted HR for one additional MS attack with the corresponding 95% CI of conventional Cox PH model.
b AIC with lower values indicating a better fit to data.
c P-values for testing the PH assumption. (Time-dependent effects are shown in Fig. 2).
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number of recent attacks, in the past 2 years, fits the data
better than any other model shown in Table 2.

Fig. 2 shows the estimated, statistically significant
time-dependent effects of alternative measures of attack
frequency. The solid curves show how the logarithm of
the hazard associated with one additional attack in the
A B

C D

Fig. 2. Time-dependent effects (solid red curve) and 95% confidence interva
1A, (B) model 1B, (C) model 2, and (D) model 3. The three horizontal dash
from the conventional Cox PH model. (For interpretation of references to col
article.)
respective time window changes with increasing time since
MS onset. For comparison, the dashed lines represent the
(constant over time) log HR estimated by the corresponding
Cox PH model, with the 95% CIs. All four time-dependent
curves indicate that the log HRs for all measures decrease
sharply in the two to 3 years after the onset. This implies
l (CI) (gray area) of alternative measures of attack frequency: (A) model
ed lines indicate the effect and 95% CI of these alternative measures
or in this figure legend, the reader is referred to the Web version of this



313G. Le Teuff et al. / Journal of Clinical Epidemiology 68 (2015) 307e316
that the conventional Cox PH model that a priori restricts
these effects to be constant over the entire follow-up dura-
tion and, thus, estimates the average-overtime HR, pro-
duces two types of biases [16,26]. Firstly, it largely
overestimates the strength of the impact of higher fre-
quency of attacks on the hazard of developing MS-related
disability later than 2e3 years after the disease onset. For
example, the Cox PH model 1A suggests that each addi-
tional ‘‘early’’ attack during the first 2 years of follow-up
is associated with a 19% increase in the hazard (Table 2),
at any time during the follow-up. In contrast, the flexible
model indicates that the number of early attacks is not asso-
ciated with the hazard after about 3 years of follow-up
(Fig. 2A). Secondly, the average-over-time effects esti-
mated by the conventional Cox PH models actually seri-
ously underestimate the early risks, associated with
higher frequency of attacks in the few first years of MS evo-
lution. Indeed, in the first few years of follow-up, even the
upper bounds of the 95% CI of the Cox model-based log
HR (upper dashed lines in Figs. 2Ae2D) are much lower
than the time-dependent estimates (solid red curves) from
the corresponding flexible models.

The dotted curves represent the 95% CI for the
time-dependent effects. If the 95% CI at a given time t
(shown on the horizontal axis) excludes 0, then the respec-
tive measure of attacks frequency has a statistically signif-
icant association with the hazard at time t. Interestingly, the
95% CIs for time-dependent effects in Figs. 2Ae2C
include 0 for later follow-up times. This suggests that,
respectively, the number of attacks in the first 2 or 5 years
and the cumulative number of past attacks are associated
with significantly higher risks only during the 2e3 years af-
ter the MS onset. In contrast, the best-fitting flexible model
3 suggests that the higher updated number of recent attacks,
in the last 2 years, may be still associated with significantly
increased risks in the later stages of disease evolution, even
5e10 years after the MS onset, when the 95% CI in Fig. 2D
excludes 0.
4. Discussion

In this article, we reassessed the role of the frequency of
past and recent attacks as prognostic factors for disability
progression in MS. Our results suggest that the analyses
of MS progression may be enhanced by addressing two
methodological limitations of the previous analyses that
are common in clinical prognostic studies [4]. Firstly, we
demonstrated the advantages of using time-varying covari-
ates to account for changes in the values of prognostic fac-
tors during the follow-up. Indeed, compared with the
number of attacks in the first 2 years, used in previous
studies of MS evolution [67e70], both proposed
time-varying measures, based on updated numbers of either
cumulative or, especially, recent attacks in the past 2 years,
improved substantially the models fit to data. Secondly, our
flexible analyses confirmed the importance of assessing the
validity of the conventional PH assumption, which con-
straints the estimated HRs to remain constant over time
[5]. Although this important assumption is seldom tested
in clinical applications of Cox’s PH model [4], it is violated
by several important prognostic factors [16,24,25,56]. In
fact, our results consistently indicated that the prognostic
ability of all measures of attack frequency in RR MS
decreased significantly with increasing follow-up duration.
However, in contrast to the other measures, the updated
number of recent attacks, in the previous 2 years, retained,
until the end of follow-up, a statistically significant
short-term association with the hazard of developing an
irreversible moderate MS disability, in the next 2 years.
In other words, at any time during the follow-up, patients
with higher number of recent attacks had statistically
significant higher risks of developing moderate disability
in the next 2 years. Importantly, in the flexible
time-dependent model, risk of developing irreversible
disability associated with increased frequency of recent
MS attacks was much higher than suggested by the conven-
tional Cox PH model, used in most previous studies
[37,58,68,75].

Some limitations of our study have to be recognized.
Most of our subjects were recruited before the introduction
of immunomodulatory treatments. However, we do not
think that the impact of the number of MS attacks would
be so different nowadays. For example, even if immuno-
modulatory treatments reduce the disease activity, some
variation between the number of recent attacks experi-
enced by different patients remains and is likely to be asso-
ciated with their short-term risks of disability progression.
Furthermore, although our study population is limited to
the Burgundy region of France, demographic characteris-
tics (age at MS onset, sex ratio) and the distribution of
initial symptoms are comparable to the well-known and
validated French MS population reported by Confavreux
et al. [37]. One challenge, common to longitudinal studies
of MS evolution, was how to define the outcome. Similar to
some previous studies [37,58,67], based on both statistical
power and clinical relevance considerations, we have cho-
sen EGS score �3 as the end point for our time-to-event
analyses. EGS score of 3 indicates an unlimited walking
distance without rest, but unable to run, or a significant
not ambulation-related disability and, as such, may be
considered as the lowest level of irreversible disability,
which may limit activities of daily living [62]. It should
be noticed that either EGS score of 3 or any other EGS
score does not depend on or account for MS attacks and
is not affected by transient increases in recent disease ac-
tivity or temporary worsening of symptoms [62]. Finally,
to keep our multivariate models parsimonious, given rather
limited number of events in our data set, we adjusted the
effects of attack frequency only for age and gender, as in
some other studies of MS prognosis [37,66]. Future
research should assess the robustness of our findings with
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respect to adjusting for additional characteristics (neuroi-
maging and cerebrospinal fluid data).

We focused on the number of MS attacks rather than the
length of the first interattack interval, which is commonly
used in prognostic studies of MS disability progression
[40,42]. One reason was that there is often some ambiguity
regarding the temporal sequence of the occurrence of
disability vs. the timing of the second attack, which deter-
mines the length of the first interattack interval
[37,67,68,76]. We have previously demonstrated that, in
such situations, complex modeling, with two separate
time-dependent covariates [8], is necessary to avoid biases
that occur if future information is used to predict past out-
comes [6,7]. From this perspective, our choice of the num-
ber of attacks simplifies both the analyses and interpretation
of the estimate effects. On the other hand, very high corre-
lation between the number of early attacks and the length of
the first interattack interval suggests that the latter measure
is also unlikely to perform as well as the updated number of
recent attacks.

Previous prognostic studies of MS disability (1) were
limited to the role of attacks, in the first 2 years after diag-
nosis [58,65,66,68e70,77], and (2) relied on conventional
Cox’s PH model [37,68,78,79]. In contrast, by using more
flexible statistical methods, we have demonstrated that (1)
prognosis of MS disability occurrence is improved by using
updated information on the number of recent attacks and
(2) the PH assumption is incorrect as the prognostic value
of all attack frequency measures decreases with increasing
follow-up duration. The latter finding, concordant with a
recent report by Tremlett et al. [48], may partially explain
the contradictory results regarding the effect of the number
of early attacks in previous publications, which assumed
this effect was constant during the entire follow-up
[68,77]. These new insights may be relevant for the clinical
management of MS. They indicate that a continuous
reassessment of recent disease activity throughout the
follow-up will help dynamically adapt the treatment to cur-
rent needs of individual MS patients, to reduce disease ac-
tivity and its impact on long-term disability.

In conclusion, our analyses illustrate the potential ad-
vantages of flexible modeling that accounts for changes
over time in both values of prognostic factors and their
impact on future outcomes, in clinical prognostic studies.
Our results provide new insights about the role of the fre-
quency of past and recent relapses in the evolution of rela-
psingeremitting MS. Future applications of similar
methods may enhance the accuracy of findings in prog-
nostic studies of different diseases and outcomes, which
increasingly involve repeated measures of prognostic fac-
tors during the follow-up.
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