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Prognostic studies are essential to understand the role of particular prognostic
factors and, thus, improve prognosis. In most studies, disease progression
trajectories of individual patients may end up with one of mutually exclusive
endpoints or can involve a sequence of different events.

One challenge in such studies concerns separating the effects of putative
prognostic factors on these different endpoints and testing the differences between
these effects.

In this article, we systematically evaluate and compare, through simulations, the
performance of three alternative multivariable regression approaches in analyzing
competing risks and multiple-event longitudinal data. The three approaches are:
(1) fitting separate event-specific Cox’s proportional hazards models; (2) the
extension of Cox’s model to competing risks proposed by Lunn and McNeil; and
(3) Markov multi-state model.

The simulation design is based on a prognostic study of cancer progression, and
several simulated scenarios help investigate different methodological issues relevant
to the modeling of multiple-event processes of disease progression. The results
highlight some practically important issues. Specifically, the decreased precision
of the observed timing of intermediary (non fatal) events has a strong negative
impact on the accuracy of regression coefficients estimated with either the Cox’s or
Lunn-McNeil models, while the Markov model appears to be quite robust, under the
same circumstances. Furthermore, the tests based on both Markov and Lunn-McNeil
models had similar power for detecting a difference between the effects of the same
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Modeling of Multi-State Disease Progression 1403

covariate on the hazards of two mutually exclusive events. The Markov approach
yields also accurate Type I error rate and good empirical power for testing the
hypothesis that the effect of a prognostic factor on changes after an intermediary
event, which cannot be directly tested with the Lunn-McNeil method. Bootstrap-
based standard errors improve the coverage rates for Markov model estimates.
Overall, the results of our simulations validate Markov multi-state model for a wide
range of data structures encountered in prognostic studies of disease progression,
and may guide end users regarding the choice of model(s) most appropriate for their
specific application.

Keywords Cox’s PH model; Lunn-McNeil model; Markov model; Multi-event
process; Simulation.

Mathematics Subject Classification 62N01; 62P10.

1. Introduction

Many clinical prognostic studies attempt to model longitudinal processes of disease
progression and resulting mortality, in which a patient may experience several
clinical events, rather than just a single endpoint (Thein et al., 2009; Wu et al., 2010).
These events can be either mutually exclusive, e.g., death due to a disease of interest
versus due to other causes; or one event (e.g., a non fatal heart attack) may or may
not precede another (e.g., death). Therefore, the appropriate analysis of such studies
should account for, respectively, competing risks and/or alternative pathways of
disease progression (le Cessie et al., 2009; Meira-Machado et al., 2009). However,
the single-endpoint conventional time-to-event methods, such as Cox’s proportional
hazards model, are still the methods of choice for analyzing many such prognostic
studies (Abouassaly et al., 2009; de Voogd et al., 2009; Kumar et al., 2009; Welten
et al., 2008).

The conventional applications of Cox’s regression to modeling of multi-event
data involve fitting a separate Cox’s model for each endpoint, while censoring
subjects at the time of the competing event(s) (Putter et al., 2007). This approach has
been refined by Lunn and McNeil, who proposed extending the Cox’s model to the
competing risks context, through data augmentation (Lunn and McNeil, 1995). The
Lunn and McNeil (LM) method allows a simultaneous estimation of the (separate)
effects of covariates on each type of event, as well as direct testing of the differences
between the effects of the same prognostic factor on different competing events.

Another class of models particularly relevant for modeling disease progression
processes involving multiple events are the Markov multi-state models, which
generalize classic (single-event) time-to-event analyses to multiple outcomes
(Andersen and Keiding, 2002). Markov models estimate the probability of
transitions between different health states and determine how covariates affect
the probability of each transition. Markov models are more general than the
competing risks models in that the former are able to account not only for
competing risks between mutually exclusive endpoints, but also for different
multi-event pathways of transitions between consecutive states (Commenges, 1999;
Hougaard, 1999). Similar to the competing risks models, they allow for formal
testing of statistical significance of the differences between the effects of the same
variable on the risks of different events. In an empirical study of colorectal
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1404 Huszti et al.

cancer, Dancourt et al. (2004) investigated several methodological issues related to
modeling of disease progression, and compared different analytical approaches.
They concluded that the Markov multi-state model provided a better insight into
the course of cancer progression, and into the role of recurrence in this process, than
the conventional Cox’s proportional hazards model. However, to the best of our
knowledge, no simulation studies have yet systematically evaluated and compared
the accuracy of regression coefficients estimated with the alternative multivariable
models for analyzing multi-event prognostic studies.

Another methodological issue, specific to multiple-events analyses, that requires
a systematic evaluation, concerns testing of the hypotheses regarding the difference
between the effects of the same prognostic factor on the risks of different events.
Such testing is important to understand the disease evolution and may help identify
subgroups of patients at high risk of particular events, which may ultimately
enhance the effectiveness of preventive interventions and optimize allocation of
limited resources (Freidlin and Korn, 2005).

In this article, we rely on simulations to investigate the above methodological
issues, assuming different, clinically plausible scenarios, which involve multiple
events, in the context of both “competing risks” and transitions through consecutive
events. We assess and compare the performance of two survival analytical
approaches involving: (i) fitting separate event-specifc Cox’s models; (ii) the Lunn
and McNeil extension of the Cox’s model to competing risks analyses (Lunn and
McNeil, 1995); as well as (iii) the Markov multi-state model MKVPCI developed by
Alioum and Commenges (2001). The next section provides an overview of the above
methods. Section 3 describes the simulated scenarios, as well as data generation
and data analysis procedures. Section 4 summarizes the simulation results, and
discussion in Sec. 5 concludes the article.

2. Methods Compared

2.1. Cox’s Proportional Hazards Model

The very popular Cox’s Proportional Hazards (PH) model estimates how the hazard
of a single clinical endpoint depends on a vector of covariates (Cox, 1972):

h�t �Z� = h0�t� exp
( k∑

m=1

�mzm

)
� (1)

where h�t �Z� is the hazard at time t conditional on covariate vector Z =
�z1� � � � � zk�, h0�t� is the baseline hazard corresponding to Z = 0, and � =
��1� � � � � �k� is the vector of associated regression coefficients, i.e., the logarithm of
hazard ratios associated with a unit increase in a given covariate (Cox, 1972; Klein
and Moeschberger, 2003).

In the case of prognostic studies involving multiple events, typically a separate
Cox’s model is estimated for each event of interest (Dancourt et al., 2004). In each
model, subjects who reach any of the “competing” events before the event of interest,
are censored at that time (Dancourt et al., 2004; Putter et al., 2007). This approach
does not allow for “direct” testing of whether the effects of a particular covariate
on two different events of interest are the same, as these effects are estimated in
separate models.
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Modeling of Multi-State Disease Progression 1405

2.2. Lunn and McNeil Competing Risks Model

Lunn and McNeil (1995) proposed a nonparametric model that extends the Cox
regression model to the competing risks framework under the assumption that the
hazard functions for different event types are proportional. The Lunn and McNeil
(LM) method involves estimating a single regression model, which incorporates
all possible C ≥ 2 failure types, by restructuring the data. In the competing risks
context, a subject may fail of only one of the C distinct causes. As such, the
observed time to failure of an individual is defined as the minimum of the
potential failure times, i.e., the time to occurrence of the first event of any type.
In the LM method, subject’s data are duplicated C times, with separate rows
corresponding to each failure type, and C-1 indicator variables �fc� are created for
event types c = 2� 3� � � � � C, with Type I event being the “reference.” Accordingly,
the hazard, conditional on covariates, is modeled as (Lunn and McNeil, 1995):

h∗�tj � zi� = h∗
0�tj� exp

[
C∑

c=2

(
�cfc +

k∑
m=1

�cmfczm

)
+

k∑
m=1

�mzm

]
� (2)

In model (2), h∗
0�t� is the baseline hazard, corresponding to covariate vector Z =

0, for the “reference” event “1”, and �c represents the logarithm of the ratio of
the baseline hazard for the event of type c �2 ≤ c ≤ C�, relative to the “reference”
baseline hazard, i.e., accounts for different incidence rates for different competing
events. The coefficient �m represents the effect of prognostic factor zm on the
“reference” hazard of the failure event of Type I. Finally, the coefficients for the
“interaction terms” �cm account for the possibly different effects of prognostic
factors on alternative outcomes. Specifically, the log HR for the effect of covariate
zm on the hazard of event c �c �= 1� is estimated as �m + �cm (Lunn and McNeil,
1995). Robust variance estimates are used to account for the inter-dependence of C
“observations” per subject (Wilcox, 1997).

An important advantage of the Lunn and McNeil method, in the competing
risks context, is that it permits testing the “global” null hypothesis that the effect of
a prognostic factor zm is the same on all C event types. This is achieved through a
�C-1� degrees-of-freedom (df) Likelihood Ratio Test (LRT) of all �C-1� interactions
involving the prognostic factor zm (Lunn and McNeil, 1995). The LM method also
permits a direct test of a more detailed null hypothesis �cm = 0, for c �= 1, i.e., testing
if the effect of zm on the hazard of event c differs from its effect on the hazard of
the “reference” event 1. Finally, testing the difference of the impact of zm on two
competing “non reference” events (p �= 1 vs. s �= 1) requires (i) restricting �pm = �sm,
and (ii) then comparing the deviance of the resulting, restricted model with that of
the un-restricted model, through a 1df LRT (Lunn and McNeil, 1995).

2.3. Multi-State Markov Model: MKVPCI

Another way of looking at event-time data is to consider an event as a transition
from one state to another (Andersen and Keiding, 2002; Hougaard, 1999). In
this context, multi-state models generalize the conventional survival methods to
modeling of several events, which may involve either competing risks, or a sequence
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1406 Huszti et al.

of events, or a combination of these two types. The states analyzed in a multi-state
model may include both absorbing states (e.g., death), which do not permit further
transitions, and transient or “intermediary” states (e.g., non fatal heart attack or
disease recurrence), which allow further transitions to another state (Andersen and
Keiding, 2002; Hougaard, 1999).

A multi-state model is defined as a stochastic process �Y�t�� t ∈ T�, with a finite
state space S = �1� � � � � k	. The transition probabilities are defined as (Andersen and
Keiding, 2002):

Phj�s� t� = P
Y�t� = j � Y�s� = h� �−s � (3)

for h� j ∈ S, s� t ∈ T , s ≤ t, so that the probability of transition from an (earlier)
state h to the (later) state j may depend on the “history”, i.e., on the sequence
of states through which the subject has transitioned before time s (�−s �. Transition
intensities are defined as the instantaneous risk of the change of the state:

�hj�t� = lim

t−>0

Phj�t� t + 
t�


t
� (4)

From a survival analysis perspective, the transition intensity in a multi-state
model is equivalent to the hazard function (Andersen and Keiding, 2002; Hougaard,
1999). Markovian processes represent a special class of multi-state models, where
the transition intensity depends on the “history” only through the current state
(Hougaard, 1999).

In our simulations, we evaluate the time-homogeneous version of the MKVPCI
multivariable Markov multi-state model developed by Alioum and Commenges
(2001) for estimating the effects of covariates on the intensities of transitions
between k states. In the time-homogeneous model, these intensities are assumed
to remain constant over time. Therefore, for any given individual, the transition
probabilities are assumed to depend only on (i) covariates, and (ii) the length of
time interval (w), in which the transition may be observed, but not on the duration
of follow-up until time s � Phj�s� s + w� = Phj�0� w� = Phj�w� for all s. The MKVPCI
model allows for regression modeling of the transition intensities, under the
proportional intensities assumption, that is consistent with the proportional hazards
(PH) assumption underlying the Cox’s model, which implies constant-over-time
covariate effects:

�hj�t �Z�t�� = �hj0 exp
( k∑

m=1

�hjmzm�t�

)
� (5)

where Z�t� = �z1�t�� � � � � zk�t�� is a matrix of, possibly time-dependent, covariates,
�hj0 is the “baseline” intensity of the transition from h to j, corresponding to
Z�t� = 0, and �hj = ��hj1� � � � � �hjk� is a vector of constant-over-time regression
coefficients. These coefficients describe the covariate effects on the intensity of
transition from h to j. The MKVPCI estimation process produces full maximum
likelihood estimates of both baseline transition intensities and regression coefficients
(Alioum and Commenges, 2001).

In practice, the exact time of transition to a transient state, such as the onset
of a disease, usually cannot be observed. Indeed, typically the occurrence of the
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Modeling of Multi-State Disease Progression 1407

transition to a transient (“intermediary”) state can be established only at discrete
assessment times, corresponding, for example, to consecutive visits to the clinic.
Therefore, the status of subject i is assessed only at mi discrete times ti�j , j =
0� � � � � mi, and the resulting vector of consecutive states is denoted as yi�j = Y�ti�j�.
Still, the user can set one of the states considered in the analysis as an absorbing
state, and assume that transition times to this state are exactly known. In this
case, the calculation of the likelihood is modified, and involves the Chapman–
Kolmogorov equations (Alioum and Commenges, 2001).

In the MKVPCI Markov model, the null hypothesis of the equality of the
effects of the same covariate on two different transitions �H0 � �hj = �rv� is tested
through a 1-df Wald-like test, which compares the model with the constraint: �hj =
�rv vs. the un-constrained model with the same covariates (Alioum and Commenges,
2001).

3. Simulation Scenarios and Data Generation

3.1. Simulation Design and Data Generation

We based the general design of our simulations on an empirical prognostic study of
colon cancer progression, based on a population-based French colon cancer registry
(Dancourt et al., 2004; Quantin et al., 1999). We generated the 10-year follow-up
data for a hypothetical cohort of N subjects, diagnosed with colon cancer at time
0. Accordingly, the follow-up started with all patients in state 1 = cancer diagnosis.
From there, they could have transitioned to either an intermediary state 2 = cancer
recurrence, or state 3 = death, considered an absorbing state. All three transition
intensities (1 → 2� 1 → 3, and 2 → 3) were assumed to depend on three prognostic
factors: age at diagnosis, sex, and cancer stage at diagnosis. Most scenarios focused
only on competing risks between the two earlier transitions (1 → 2 vs. 1 → 3).
However, we also developed a scenario that involved testing of the hypothesis that
the covariate effect on the hazard of death changed after the intermediary event
2 (H0 � �13 = �23). Thus, the simulated scenarios involved both “competing risks”
of recurrence (1 → 2) vs. recurrence-free death (1 → 3), and transitions through
consecutive events (death after recurrence: 2 → 3).

For simplicity, we focused on, and presented results only for age and sex (one
continuous and one binary variable), although event times were always generated
conditional on all three covariates. Depending on the simulated scenario, the effects
of age and sex on different transitions could be the same or different. In all
simulations, when generating times to death and to recurrence, we assumed that
all prognostic factors effects conform to the PH assumption, i.e., true hazard
ratios remained constant over the entire 10-year follow-up period. Moreover,
all baseline transition intensities were assumed constant over time, consistent
with exponential survival model and the time-homogeneous Markov model
(Marshall et al., 1995).

Covariates. The three covariates were generated to correspond to their
empirical distribution in the French colon cancer registry (Le Teuff et al., 2005).
First, sex was generated with P(male) = P(female) = 0�5. Next, age at diagnosis was
generated from a log-normal distribution, conditional on sex, with mean age of
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1408 Huszti et al.

71 years for men and 75 years for women. Cancer stage was generated from the
marginal multinomial distribution, independent of age and sex, with probability of
five consecutive, progressively more severe, stages equal to, respectively, 0.17, 0.35,
0.20, 0.06, and 0.22.

Outcomes. For each of N subjects, i = 1� � � � � N , we first generated,
independently of each other, two times, corresponding to the expected times for,
respectively, transition 1 → 3, from cancer diagnosis to death without recurrence
T

�1→3�
i � and transition 1 → 2 from cancer diagnosis to cancer recurrence T

�1→2�
i .

Both times were generated from an exponential distribution, conditional on
the covariates. For example, to generate times to recurrence-free death, we use
the inverse formula: T

�1→3�
i = �− ln�ui��/
�13 exp��

′
13Zi��, i = 1� � � � � N� where ui

is an uniform 
0� 1� random variable, Zi is the generated covariate vector for
the ith subject, �13 represents the vector of “true” covariate effects (log hazard
ratios) on death, and �13 the baseline exponential hazard of recurrence-free death,
corresponding to Z = 0 (Bender et al., 2005). Times to recurrence were generated in
a similar fashion, except for a different baseline hazard �12, and, in simulations that
focused on testing the differences in the covariate effects on alternative transitions,
with �12 �= �13.

Finally, we generated N individual times T
�2→3�
i from recurrence to cancer

death (transition 2 → 3). The corresponding time from diagnosis �t = 0� to death
after recurrence was then calculated as the sum of the times for each of the two
consecutive transitions: T�1→2�

i + T
�2→3�
i .

We introduced administrative censoring (AC) of all subjects who remained at
risk until the end of the follow-up, i.e., at AC = 10 years. We also generated N
expected drop-out times Ci, i = 1� � � � � N , from uniform U
0� AC/w� distribution,
independent of covariates and outcomes, where w < 1 controlled the proportion of
subjects expected to drop-out before AC, if there were no deaths (Le Teuff et al.,
2005).

For each individual, the sequence of his/her transitions between states, and the
observed total follow-up time �i, until either death or censoring, were determined
by the order of the generated times for (a) different events, (b) drop-out, and (c)
administrative censoring. The following sequences could occur. If the shortest time
generated for an individual was the time to drop-out or administrative censoring,
i.e., �i = min�T �1→3�

i � T
�1→2�
i � Ci� AC	 corresponded to either Ci or AC, then subject

i was censored without any event, i.e., remained in state 1 until the end of his/her
follow-up, at �i = min�Ci� AC	. If �i = T

�1→3�
i , then the subject transitioned directly

from state 1 to state 3, and at �i the event 3 (recurrence-free death) was observed. On
the other hand, if �i = T

�1→2�
i , then subject i experienced transition 1 → 2, i.e.,

developed cancer recurrence at T
�1→2�
i . The subject could then further transition

to the absorbing state 3 (death after recurrence) if min�T �1→2�
i + T

�2→3�
i � Ci� AC	 =

T
�1→2�
i + T

�2→3�
i . Otherwise, the subject remained in state 2 until the end of his/her

follow up at �i = min�Ci� AC	.
The generated data were structured so that each subject had multiple entries,

since non-absorbing states, such as recurrence (transient state 2), were considered to
be assessed only at repeated, discrete observation times (Alioum and Commenges,
2001), the frequency of which was varied throughout the simulations (see Secs. 3.2
and 3.3 for details).
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Modeling of Multi-State Disease Progression 1409

3.2. Simulated Scenarios

Several simulated scenarios were considered, in order to investigate different
methodological issues relevant to the modeling of multiple-event processes of disease
progression.

One practically important aspect of multi-event prognostic studies concerns the
accuracy of the information regarding the times of transitions from one state to
another. In real-life clinical and epidemiological studies, the occurrence of most
transient events, such as cancer recurrence or loss of immunity, can be observed only
at discrete “assessment times”, corresponding to, for example, visits to the clinic or
administration of the relevant laboratory test. Accordingly, the timing of transient
events is usually known only as falling within a certain time interval, between
the two assessment times. In contrast, the exact date of death is usually known.
The first scenario investigated the impact of decreasing frequency of “assessment
times”, at which the occurrence of the transient event 2 could be determined, on the
accuracy of regression coefficient estimates. To this end, we decreased the number
of repeated observations �P� from P = 20 to P = 10 and P = 5. Since the total
follow-up length was kept at 10 years, this implied increasing the length of the time
intervals between consecutive observations from 6 months to, respectively, 1 and 2
years. The “true” generated effects of the prognostic factors for scenario 1, including
sensitivity analyses, are shown in Table 1. In a sensitivity analysis, we changed
the relative strength of the prognostic factor effects on the recurrence versus death
without recurrence in order to assess how these changes will affect the results in the
context of imprecise timing of the transient event.

In additional sensitivity analyses we varied the sample size. Specifically, we
simulated datasets with N = 250, 500, 1,000 and, in limited experiments, we also
considered a very large N = 5�000, while fixing the maximum number of repeated
observations to P = 5.

The next two scenarios focused on issues specific to hypotheses testing in
the context of multi-event analyses. The second scenario involved hypotheses of
particular interest for “competing risks” analyses. Specifically, we tested the null
hypothesis H0 � �12 = �13 for the binary covariate “sex.” Since any test based on
two separate Cox models ignores the possible covariance of the two estimates, we
did not employ Cox’s models in our analysis of the second scenario’s data, and
limited our comparisons to MKVPCI versus LM approaches. In scenario 2a, in
order to estimate the Type I error rates, the covariate effects on both transitions
were assumed to be equal (�12 = �13 = ln�2��, corresponding to HR = 2 for men
relative to women). In scenario 2b, in order to estimate the empirical power, we
assumed the effects differed with �12 = ln�2� vs. �13 = ln�1�3�.

In the third scenario, we focused on testing whether the effect of a prognostic
factor on an absorbing event (state 3) changed after a transient event (state 2)
had taken place. Because this situation does not involve competing risks, for which
the Lunn and McNeil (1995) approach was developed, we compared only the
Markov MKVPCI model with a time-dependent Cox’s model. Specifically, the null
hypothesis tested was H0 � �13 = �23 for the binary covariate “sex.” As above, both
effects were assumed to be equal for assessing Type I error, while to assess power,
we assumed different effects (“true” values are shown in the Results section).

For both the second and third scenarios, the sample size was fixed at N = 1�000,
the maximum number of repeated observations at P = 20, and the effects of other
covariates were the same as shown in Table 1.

D
ow

nl
oa

de
d 

by
 [

M
cG

ill
 U

ni
ve

rs
ity

 L
ib

ra
ry

] 
at

 1
1:

54
 2

0 
Se

pt
em

be
r 

20
11

 



T
ab
le

1
C
om

pa
ri
so
n
of

es
ti
m
at
ed

pr
og

no
st
ic

fa
ct
or

ef
fe
ct
s
be
tw

ee
n
th
e
th
re
e
m
od

el
s.
Sa

m
pl
e
si
ze

�N
�
=

50
0

T
ra
ns
it
io
n

ty
pe

P
ro
gn

os
ti
c

fa
ct
or

(T
ru
e
va

lu
e)

R
ep
ea
te
d

ob
se
rv
at
io
ns

(P
)

%
R
el
at
iv
e
bi
as

(9
5%

C
I)

%
C
ov

er
ag

e
ra
te

(C
R
)

(%
bo

ot
st
ra
p
C
R
)

R
M
SE

ra
ti
o

C
ol
um

n
C
O
X

L
M

M
K
V
P
C
I

C
O
X

L
M

M
K
V
P
C
I

C
O
X
/M

K
V
P
C
I
L
M
/M

K
V
P
C
I

1
2

3
4

5
6

7
8

9
10

11

A
G
E

P
=

5
−9

�3
−0

�3
4�
0

98
(9
7)

91
(9
3)

85
(9
1)

0.
65

0.
74

�−
15

�0
�
−3

�6
�

�−
1�
3�

0�
8�

�−
0�
7�

8�
6�

ln
�1
�0
4�

P
=

10
2.
1

1.
5

7.
6

98
(9
8)

94
(9
5)

87
(9
0)

0.
67

0.
77

�−
0�
7�

4�
9�

�−
0�
9�

3�
9�

�1
�0
�
14

�2
�

P
=

20
5.
7

1.
0

5.
2

98
(9
7)

98
(9
8)

92
(9
3)

0.
79

0.
77

(1
.2
;
10

.3
)

�−
0�
9�

3�
0�

(0
.9
;
9.
6)

SE
X

P
=

5
−9

�6
2.
8

−3
�5

92
(9
0)

98
(9
8)

83
(8
8)

0.
80

0.
83

�−
15

�3
�
−3

�8
�

�−
0�
4�

6�
1�

�−
7�
9�

0�
8�

ln
�2
�

P
=

10
0.
1

3.
2

−0
�2

95
(9
7)

93
(9
5)

81
(9
3)

0.
73

0.
77

�−
0�
4�

0�
6�

�−
0�
2�

6�
7�

�−
1�
4�

0�
9�

P
=

20
4.
6

1.
8

0.
6

97
(9
2)

96
(9
6)

86
(9
5)

0.
85

0.
82

(0
.5
;
8.
6)

�−
0�
8�

4�
4�

�−
0�
9�

2�
1�

A
G
E

P
=

5
−3

9�
5

−3
7�
6

−1
0�
5

89
(8
5)

94
(8
9)

75
(8
5)

0.
61

0.
50

�−
49

�1
�
−2

9�
9�

�−
47

�1
�
−2

8�
1�

�−
17

�8
�
−3

�2
�

ln
�1
�0
2�

P
=

10
−1

5�
8

−2
0�
6

−7
�2

94
(9
1)

98
(9
0)

69
(8
8)

0.
50

0.
43

�−
22

�9
�
−8

�6
�

�−
28

�5
�
−1

2�
7�

�−
13

�6
�
−0

�8
�

P
=

20
−3

�2
−9

�7
2.
8

95
(9
7)

93
(9
5)

77
(9
2)

0.
50

0.
53

�−
6�
7�

0�
2�

�−
15

�5
�
−3

�9
�

�−
0�
4�

6�
1�

SE
X

P
=

5
−5

1�
9

−4
0�
3

7.
0

82
(8
1)

94
(8
3)

78
(8
7)

0.
74

0.
54

�−
61

�7
�
−4

2�
2�

�−
49

�9
�
−3

0�
7�

(0
.9
;
13

.0
)

ln
�1
�3
�

P
=

10
−2

1�
6

−2
2�
8

18
.4

93
(8
9)

97
(9
2)

79
(8
5)

0.
61

0.
52

�−
29

�7
�
−1

3�
5�

�−
31

�0
�
−1

4�
6�

(8
.8
;
28

.1
)

P
=

20
−6

�0
−1

5�
4

3.
4

95
(9
5)

93
(9
1)

79
(9
1)

0.
57

0.
61

�−
10

�7
�
−1

�4
�

�−
22

�5
�
−8

�4
�

�−
0�
2�

6�
9�

1410

D
ow

nl
oa

de
d 

by
 [

M
cG

ill
 U

ni
ve

rs
ity

 L
ib

ra
ry

] 
at

 1
1:

54
 2

0 
Se

pt
em

be
r 

20
11

 



Modeling of Multi-State Disease Progression 1411

3.3. Analyses of the Simulated Data

For scenario 1, and in sensitivity analyses for this scenario, we generated 100
random samples for each combination of the relevant parameters considered. In
scenarios 2 and 3, to increase precision of the estimated Type I error rates and
empirical power of the tests of interest (Burton et al., 2006), we simulated 500
random datasets.

Each simulated dataset was analyzed with the three methods described in Sec. 2:
(i) separate Cox’s regression models for each event; (ii) LM “competing risks”
method (Lunn and McNeil, 1995), except for scenario 3 (see Sec. 3.2); and (iii) time-
homogeneous Markov multi-state MKVPCI model (Alioum and Commenges,
2001). Each model included, as independent variables, all three prognostic factors:
age, sex, and cancer stage. The effect of age on the logarithm of the hazard for a
given transition/event was a priori assumed to be linear, which was consistent with
the true generated data structure.

Timing of the transient events. For the analyses involving the Cox’s regression
and the LM method, the transient event �j = 2� was considered to happen at the
midpoint of the observation interval, in which the exact (assumed to be unknown)
time, generated for a given subject, would fall. Therefore, in the analyses focusing on
the absorbing event of “death” �j = 3�, patients for whom event j = 2 was generated
before j = 3, were censored at this interval’s midpoint. In sensitivity analysis, we
switched the censoring point to (i) either the beginning or (ii) the end of the interval,
in order to investigate how this may affect the results.

In the Markov model analyses, for the transient event j = 2, the subject’s status
was assumed to change at the end of the interval, in which the exact generated
event time would fall (Alioum and Commenges, 2001). In other words, if subject i
experiences the transient event j = 2 at ti2� tm < ti2 < tm+1, where t1 = 0, and t2� � � � � tp
are the consecutive times of repeated observations, then the status of this subject
changes from 1 to 2 at tm+1.

In contrast, for all three models, the exact time of the absorbing event 3 was
assumed to be always known. However, for the analyses that employed Cox model
with time to cancer recurrence as the outcome, subjects who died without recurrence
were censored at the time of the last observation when they were known to be still
alive. This analytical strategy corresponds to the FDA regulations (Frydman and
Szarek, 2009), which account for the fact that in real life, information about the
subject’s recurrence-free status would not be available beyond this point.

The third simulated scenario (see Sec. 3.2) required testing whether the effect
of a covariate “sex” on the hazard of the absorbing event �j = 3� changed after the
transient event �j = 2� had occurred. For Cox regression analyses of data generated
for this scenario, we implemented a Cox model that represented the occurrence of
the transient event by a binary time-dependent covariate, which changed its value
from 0 to 1 after event 2 was observed. We then tested the interaction between “sex”
and this time-dependent covariate.

Criteria to assess the models’ performance. The models’ performance was
assessed using several standard criteria related to, depending on the simulated
scenario, accuracy of either regression coefficient estimates and/or hypotheses
tests (Burton et al., 2006). Bias in the estimated effect of a prognostic factor was
quantified as the difference between the mean of the estimates, from each of the
simulated datasets, and the corresponding true log hazard ratio ���. The relative
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1412 Huszti et al.

bias was the ratio of the bias to the true value of �. The root mean square error
(RMSE) for each of the three models was calculated as the square root of the sum
of the squared bias and the empirical variance of the regression coefficient. Then,
to compare the overall relative accuracy of the estimates obtained from different
models, we calculated two ratios of the corresponding RMSE’s, with the RMSE
from either (i) the Cox model or (ii) the Lunn-McNeil model in the numerator, and
the RMSE of the MKVPCI model in the denominator.

In addition to conventional “analytical” standard errors (SE) of the regression
coefficients, in sensitivity analyses, we also estimated bootstrap SE’s. The bootstrap
SE was estimated as the standard deviation of the distribution of the corresponding
regression coefficient across 300 bootstrap resamples. To assess the accuracy of
both analytical and bootstrap-based standard error (SE) estimates, we calculated
the ratio of the corresponding mean SE estimate to the empirical standard deviation
of the corresponding log hazard ratio estimates, across the simulated samples. The
empirical coverage rates of the nominal 95% confidence intervals (95% CI) were
estimated, separately for analytical and bootstrap-based SE’s, as the proportion
of samples, in which the respective 95% CI included the true �. Type I error and
empirical power were estimated as the proportion of samples in which a given
test yielded a ‘significant’ result (2-tailed p < 0�05) when the null hypothesis was,
respectively, true and false.

4. Simulations Results

Table 1 summarizes results of 100 simulation experiments with the sample size fixed
at N = 500, resulting in about 200 transient events and about 200 absorbing events
in each simulated sample. The maximum number of repeated observations varies
from P = 5 to 10 and 20. Column 2 of Table 1 shows the “true” effect (�� of a
prognostic factor on the intensity of each transition.

Results in columns 4 and 5 show that for both survival analytical methods
(Cox and Lunn-McNeil (LM)), varying the frequency of repeated observations had
a strong impact on the accuracy of the estimated effects of both prognostic factors
on transition to recurrence-free death �1 → 3�, but not for transition to recurrence
�1 → 2�. For example, for the Cox’s model, the relative underestimation bias in the
effect of age on the risk of death without recurrence increased from about −3%
to about −39%, as the number of repeated observations decreased from P = 20 to
P = 5 (Table 1, column 4). Similar pattern is seen for the binary variable (sex), and
for both age and sex estimates obtained with the LM model (column 5).

In sensitivity analyses when, in the dataset used for the analysis, the presumed
time to recurrence (transient event 2) was changed from the middle of the interval
to the end of the interval, the underestimation bias of the effects of both covariates
on the risk of transition 1 → 3 increased further (data not shown). For example, in
the Cox’s model analyses with P = 5, the log hazard ratios (�� for age and sex were
underestimated by about 73% and 96%, respectively. In contrast, when the time to
recurrence was assumed to correspond to the beginning of the interval, the same
effects were over-estimated by about 34% and 49%, respectively (data not shown).

Unlike Cox’s and Lunn-McNeil’s estimates, the Markov model estimates
seemed to be much less affected by the decreasing precision of the information
on time to transition 1 → 2. For the effect of age on the risk of death without
recurrence �1 → 3�, MKVPCI produced a relative biases of about +3%, −7%, and
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Modeling of Multi-State Disease Progression 1413

−10%, as the number of observations decreased from P = 20 to P = 10 and P =
5 (Table 1, column 6). Similarly, no trend toward a systematic under- or over-
estimation bias was observed for the Markov estimates of the effect of sex on the
same transition (Table 1, column 6). Overall, for a transition to the absorbing state 3
(with known exact event time), the Markov model produced substantially less biased
estimates than the two survival analytical models if the timing of the “competing”
transient event 2 was measured with low precision, and comparable, small bias if
this time was measured with the precision as high as about 5% of the total follow-
up time �P = 20�. Notice that in Markov model, the transition is always assumed
to occur at the end of the relevant time interval, i.e., at the time when it can be first
established in clinical practice (Alioum and Commenges, 2001).

Interestingly, the accuracy of the estimates for the effects of either prognostic
factor on transition 1 → 2 were largely unaffected by the decrease in the frequency
of repeated observations, i.e., by decreasing precision in the measurement of time
to this transition (upper half of Table 1). Indeed, for all three models and both
covariates, the relative biases are small, varying between −9% and +8%. Whereas
Markov estimates tend to be slightly more biased, the confidence intervals for the
relative bias yielded by the three models show considerable overlap.

In all situations represented in Table 1, the Markov model produced estimates
with a larger variance than the two survival models. The ratios of the empirical
standard deviations (SD) for the estimates obtained with (i) the Cox model and (ii)
the LM method, vs. MKVPCI ranged, respectively, from 0.45–0.81 and from 0.31–
0.83 (data not shown). As a consequence of the inflated variance, the Root Mean
Squared Errors (RMSE) of the Markov model estimates were systematically higher
than for both survival analytical models, as shown by the RMSE ratios smaller
than 1 in all rows of Table 1 (columns 10 and 11). Thus, with the sample size of N =
500, the inflated variance of the Markov estimates seems to outweigh the benefits of
reduced bias, resulting in higher RMSEs.

However, in a sensitivity analysis, in which we increased the sample size by a
factor of 10, to N = 5� 000, the bias/variance trade-off between the accuracy of the
estimates yielded by the three methods changed. As expected, for all methods, the
variance decreased largely, while the relative bias was not systematically affected by
the sample size (data not shown). Accordingly, even if the Markov model estimates
still had larger variance, in the case of P = 5, their smaller bias resulted in RMSE
for the Cox and LM being higher than for MKVPCI, with ratios ranging from 1.11–
1.33 (data not shown).

The ratios of empirical SD’s of the regression coefficients to the corresponding
mean value of the conventional analytical SE were close to 1.0 for the Cox’s
and LM estimates but systematically below 1 for the Markov estimates (data not
shown). As a consequence, the vast majority of the coverage rates produced by
the two survival models were over 90% (Table 1 columns 7 and 8), while the
Markov model produced lower coverage, which ranged between about 70% and 90%
(column 9). In sensitivity analysis, we used 300 bootstrap samples in an attempt
to better capture the empirical variance of the Markov model-based estimates,
and therefore obtain coverage rates. Results presented in columns 7–9 of Table 1
show improved coverage rates for all 3 models in most cases with small bias.
However, the most important improvement is seen for the Markov model, and,
while still somewhat lower than for the two survival models, the bootstrap-based
coverage rates range from 85–95%. Also, the bootstrap-based coverage rates became
somewhat smaller for Cox and LM when effect estimates were strongly biased.
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1414 Huszti et al.

Table 2 summarizes results of 100 simulation experiments with the maximum
number of repeated observations fixed at P = 5, implying subjects were evaluated
at 2-year intervals. The table compares the results of the three models across three
different sample sizes: 250, 500, and 1,000. The accuracy of the point estimates and
confidence intervals for any of the three models is not strongly influenced by the
decrease in sample size. For transition 1 → 2, the relative bias for the effects of both
sex and age did not exceed +/−10%. Regardless of the sample size, the Markov
model produced significantly less biased estimates of the effects of both prognostic
factors on the risk of the absorbing event (1 → 3), compared to either survival
analytical model. The consistently strong bias toward the null of the estimates
obtained with both Cox and Lunn-McNeil models, ranging between 38% and 52%,
did not diminish with increasing sample size. These results are consistent with those
from Table 1 when the number of repeated observations is small �P = 5�. The
RMSE ratios (Table 2 columns 10 and 11) show a larger RMSE produced by the
Markov model with respect to Cox and LM in all cases, with no clear trend as
sample size increases. Coverage rates did not either vary systematically across the
sample sizes for any of the models, but they were overall smaller for the Markov
model (68–87%) than for both Cox’s and Lunn-McNeil models (79–98%).

The coverage rates based on the bootstrap SE obtained in sensitivity analysis,
presented in columns 7–9 of Table 2, show similar improvements coverage rates for
all 3 models in most cases with small bias as in Table 1. For the Markov model the
bootstrap-based coverage rates range from 82–91%, therefore reducing substantially
the gap between the coverage rates for the three models.

In the main simulations, we assumed that the effects of age and sex were
always stronger on the transition towards recurrence �1 → 2� than on the transition
towards recurrence-free death �1 → 3�. In sensitivity analysis, we inverted this
pattern and imposed stronger effects of the prognostic factors on the recurrence-free
death �1 → 3�. In the Cox’s model with recurrence as the outcome, and recurrence-
free death as the censoring event, the relative biases became substantially larger than
in the main analysis. These biases further increased as the effects on the censoring
event �1 → 3� became larger relative to the effects on transition 1 → 2, i.e., on the
event of interest (data not shown).

Table 3 compares the two models, LM and MKVPCI, with respect to (i) Type I
error and (ii) empirical power, for testing the null hypothesis of the same effect
of either sex or age on “competing risks” of transition 1 → 2 vs. transition 1 → 3.
Sample size was fixed at 1,000, and the number of repeated observations at P = 10.
Both models performed similarly, falsely rejecting the true null hypothesis in about
6% of the 500 simulated samples, i.e., yielding Type I error rates acceptably close
to the nominal 0.05 significance level. When comparing the power of the different
models to detect a difference in the effects of the binary variable (sex) on the two
risks, the Lunn-McNeil (LM) approach yielded higher power. For a smaller “true”
difference (HR1→2 = 2�2 vs. HR1→3 = 1�5), the LM-based test had a power of 53%
[43%, 63%] vs. a power of 44% [34%, 54%] for the Markov model-based test. When
increasing the “true” difference to HR1→2 = 2�5 vs. HR1→3 = 1�5, power increased
to 92% [87%, 97%] for LM and to 77% [69%, 85%] for Markov.

In contrast, the LM approach could not be directly employed to test whether
the effect of cancer stage on the hazard of death changed after the recurrence.
Thus, in simulated “scenario 3” we compared only the time-dependent Cox’s and
Markov models’ performance in testing this hypothesis. Both methods yielded
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1416 Huszti et al.

Table 3
Comparison of Type I error and Power results for testing: H0 � HR1→2 = HR1→3

N = 1�000, P = 20 True value Lunn-McNeil MKVPCI

Type I error H0 � HR1→2 = HR1→3 6% 6.2%
(4.5%, 7.5%) (4.7%, 7.7%)

Power HR1→2 = 2�2 vs. 53% 44%
HR1→3 = 1�5 (43%, 63%) (34%, 54%)
HR1→2 = 2�5 vs. 92% 77%
HR1→3 = 1�5 (87%, 97%) (69%, 85%)

correct Type I error rates: the time-dependent Cox’s model falsely rejected the “true”
null hypothesis of no difference in 5.2% of the 500 simulated samples, while the
Markov model in 4.8%. When testing a “true” difference in the effects of cancer
stage on death before or after recurrence, with HR1→3 = 3 vs. HR2→3 = 2�5, the test
of the time-dependent interaction in Cox’s model had an empirical power of 82%
[75%, 90%], i.e., very similar to the Markov model-based test, which produced a
power of 79% [71%, 87%].

5. Discussion

We have systematically evaluated and compared, through simulations, the
performance of alternative multivariable regression methods for modeling
prognostic studies, in which a patient may experience more than one type of
event. These events, that may be also considered to represent transitions between
consecutive “states,” may be either mutually exclusive, as in the competing risks
analyses, or occur one after another. To model the effects of baseline prognostic
factors on the risks of particular transitions, we considered three different statistical
methods. Firstly, we adapted the conventional single-endpoint Cox’s proportional
hazards (PH) model to the analyses of multi-event data. In the “competing risks”
framework, this involved using separate Cox’s regression analyses to model the
conditional hazard of each of mutually exclusive events, with the right censoring
on the competing event(s). On the other hand, when using the Cox’s model, the
sequence of consecutive events was modeled by introducing a binary time-dependent
“change-of-state” covariate, which changed its value from 0 to 1 at the time the
transient event had occurred. The second method considered relied on the extension
of the conventional Cox’s PH model, to the competing risks analyses, through
a specific data augmentation and manipulation proposed by Lunn and McNeil
(1995). Finally, the third method involved the MKVPCI multi-state Markov model
(Alioum and Commenges, 2001). To the best of our knowledge, the performance
of these methods was not systematically compared and/or evaluated in the context
of k ≥ 2 events, and to date their relative advantages or weaknesses in such multi-
state analyses have remained unclear. In order to gain a broad insight into the
performance of the three methods, we investigated different clinically plausible
simulation scenarios.

Our results highlight some practically important issues related to a frequent
limitation of real-life clinical data, where occurrence of many non fatal (“transient”)
endpoints can be established only at discrete time points, corresponding to clinic
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Modeling of Multi-State Disease Progression 1417

visits or pre-scheduled assessment times. We demonstrated that, in such situations,
the decreased precision of the observed timing of these events had a strong impact
on the accuracy of regression coefficient estimates obtained with either the Cox’s or
the Lunn-McNeil models. Indeed, in our simulations, the effects of the prognostic
factors on the risk of the absorbing event 3 (with exact transition times known),
estimated in either model, were strongly underestimated when we increased the
interval between the assessment times for the competing (transient) event 2, with
the interval-censored transition times. Furthermore, sensitivity analyses showed that
the bias around the estimates of these effects changed the magnitude and/or the
direction, depending on where the time to event 2 was placed within the interval, in
which the “true” generated time fell.

This pattern of results can be explained by a combination of (i) informative
censoring, and (ii) exponential distribution of event times. We assumed that older
age and male sex were associated with increasing risks of both event 2 and event 3.
Therefore, in the analyses focusing on event 3, censoring at the time of event 2
implied an informative censoring. On the other hand, exponential distribution
implies that, within each time interval, the censoring events will be more frequent
near the beginning than near the end of the interval, so that the median follow-up
time for subjects censored within each interval will be shorter than the interval’s
midpoint. As a result, assuming, as we did, that all the censoring events �j = 2�
happened at the midpoint of the interval, will overestimate the total person-times
“at risk” of those subjects who had the censoring event. Thus, the denominator
of the hazard (incidence) rate for the endpoint of primary interest (here event
j = 3) will be overestimated, and the resulting bias will increase as the length
of the inter-assessments intervals increases. In contrast, because the timing of all
absorbing events j = 3 is assumed to be known exactly, the length of the intervals
will not affect the numerator of the estimated hazard rate. Accordingly, the hazard
itself will be under-estimated because of the spuriously inflated denominator. As a
consequence, if, e.g., males are more prone to both cancer recurrence (2) and death
(3), the total “at risk” person-years for male subjects will be more overestimated
than for females, and the male/female hazard ratio will be underestimated. In
contrast, the true person-time “at risk” will be underestimated if recurrence (the
censoring event) is assumed to happen at the beginning of the interval, in which
the true time to recurrence was generated. Then, the mechanism described above
will induce an under-estimation of the denominators of the hazard rates, and the
resulting bias will be stronger for males, therefore, leading to an overestimation
of the male/female hazard ratio. In real-life applications such biases can lead to
misleading conclusions and sub-optimal treatment decisions. For instance, if the
impact of a modifiable prognostic factor is under-estimated, then physicians might
decide not to allocate necessary resources to the treatment of patients affected by
this factor, thus, depriving them of a potential treatment benefit.

In contrast to the Cox’s and LM estimates, the MKVPCI model’s estimates
of the effects of prognostic factors on the risk of recurrence-free death proved to
be quite robust with respect to decreasing precision of the timing of the competing
transient event (recurrence). Accordingly, especially for a small number of repeated
observations, the Markov model produced more accurate estimates of covariate
effects on transition 1 → 3, across a range of sample sizes, while estimates obtained
with both survival models continued to be strongly biased even when the sample
size increased.
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1418 Huszti et al.

The performance of the Cox model, in which the recurrence was the outcome
of interest, was affected if subjects who died without recurrence were censored at
the last assessment time when they were still “alive,” an approach that followed the
FDA recommendations (Frydman and Szarek, 2009). In sensitivity analysis, the
overestimation bias increased as the true effects of the prognostic factors on
the censoring event became stronger. This is most likely explained by the same
mechanism described above, in the context of censoring on recurrence at the
beginning of the interval. When the effects of the prognostic factors on the censoring
event are small in comparison with their effects on the outcome, as in our main
scenario, this bias is less marked.

On the other hand, in most simulations we observed an increased variance
for the Markov MKVPCI model estimates, as compared to either Cox’s or LM
estimates. This inflated variance of the Markov model-based estimates may be
due to the increased complexity of the model that requires simultaneous estimation
of the covariate effects on each of the logically possible transitions between
consecutive states, as well as of the baseline hazards for each transition (Alioum and
Commenges, 2001). Because of the resulting variance inflation, the overall accuracy
of the Markov model estimates of the hazard ratios, as measured by the RMSE,
was often lower than for the two alternative methods, even if the Markov-based
point estimates tended to be less biased. Whereas the bias-variance trade-off offered
by the Markov MKVPCI model gradually improved with increasing sample size,
it still points out the need for further research to attempt to stabilize the point
estimates. It should be noted that this pattern of our simulation results resembles
findings reported in many other areas of statistical research, where more complex
models may often tend to yield less biased but also less numerical stable estimates
than simpler, conventional methods (Le Teuff et al., 2005; Ionescu-Ittu et al., 2009;
Abrahamowicz et al., 1996). In a sensitivity analysis, we have evaluated the variance
of the Markov model estimates in the case of a very large sample size �N = 5�000�.
In that case, the variance of all estimates decreased substantially, while the bias did
not change systematically, relative to smaller sample sizes. As a consequence, the
bias-variance trade-off tended to favor the (less biased) Markov model estimates,
whose RMSE became lower than for the Cox’s and LM estimates.

Simulation results confirmed also our expectation that the accuracy of the
“analytical” standard errors (SE), derived from asymptotic maximum likelihood
estimation theory (Alioum and Commenges, 2001), in the Markov model would
improve with increasing sample size. In contrast, with sample sizes below 1,000,
the empirical variance of the Markov model estimates was systematically under-
estimated, resulting in sub-optimal coverage rates of the nominal 95% confidence
intervals. This suggests that part of the inflated variability of the Markov estimates
is not captured by the “analytical” SE, and that a robust “sandwich” variance
estimator (Carroll and Kauermann, 2001), or a bootstrap-based SE (Davison and
Hinkley, 1997) may be useful to enhance the accuracy of the SE and confidence
intervals. Therefore, in sensitivity analysis we estimated the SE’s based on 300
bootstrap resamples. As expected the bootstrap approach improved substantially
the coverage rates. Based on these results, we tentatively suggest that coverage
rates for Markov model-based regression coefficients should be estimated through
bootstrap.

An important advantage of both Markov and Lunn-McNeil models, over
fitting separate event-specific Cox’s models, is that they allow a “direct” model-
based testing of the hypotheses regarding the difference between the effects of the
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Modeling of Multi-State Disease Progression 1419

same prognostic factors on different competing risks (Alioum and Commenges,
2001; Lunn and McNeil, 1995). Indeed, the results of our simulations showed that
both models had good power for detecting a “true” difference between the effects
of sex on two mutually exclusive transitions, although LM performed somewhat
better than the Markov model. In real-life prognostic studies, an efficient test will
help identify potentially important differences between the effects of a prognostic
factor on competing diseases or events (Dancourt et al., 2004; Freidlin and Korn,
2005). Establishing such differences may help understanding the etiology of the
disease, and/or targeting appropriate preventive interventions and treatments to the
(correctly identified) subgroups of patients at higher risk of particular outcomes.

On the other hand, whereas the Lunn-McNeil method allows testing hypotheses
regarding competing risks, it cannot handle a sequence of different events, one of
which precedes the other(s). In contrast, the multi-state Markov model provides a
“direct” test of the hypothesis that the effect of a prognostic factor changes after a
transient event (e.g., cancer recurrence) has occurred. Simulation results indicated
that MKVPCI model-based test performed well in this context. Specifically, both
the Type I error rate and the empirical power were similar to the Cox’s model-
based test of an interaction between a prognostic factor of interest and a time-
dependent binary indicator of the transient event. From this perspective, it should
be noted that Markov models allow incorporating several transitions and testing,
e.g., the compound null hypothesis that the effects of a given factor on all transitions
are equal (Alioum and Commenges, 2001). On the other hand, incorporating three
or more intermediate events in the Cox’s model would require constructing a
series of time-dependent covariates, and testing similar compound hypotheses would
involve creating complex inter-related interactions, making the entire process very
burdensome for the end-users.

Overall, our simulations suggest that each of the three models has its specific
strengths and weaknesses, depending on the true structure of the data and some
characteristics of the underlying disease progression pathways. Our results indicate
that Markov multi-state models may be able to provide acceptably accurate results
in a wider range of analyses of multi-event processes than simpler methods based on
a series of separate Cox’s regression analyses or on the extension of the Cox’s model
to competing risks proposed by Lunn and McNeil (1995). On the other hand, while
yielding less biased point estimates of the effects of prognostic factors on the risks of
different transitions, the Markov model tends to inflate their variance. To the best of
our knowledge, no published studies provided such insights into the several aspects
of the Markov models performance, or allowed a systematic comparison of these
models with simpler alternative approaches. From this perspective, the results of our
simulations may both encourage a more widespread use of the Markov multi-state
models in real-life prognostic studies of disease progression, and alert the future
users to some limitations of these models. We also hope that the awareness of these
limitations will motivate further developments in multi-state modeling methodology.

As in most simulation studies, the assumptions under which our data were
generated were somewhat arbitrary (Bender et al., 2005). Specifically, we considered
only the exponential distributions for times to the different competing events, the
number of prognostic factors and the number of transitions were restricted to three
and, except for a limited sensitivity analysis with N = 5�000, the sample size did not
exceed 1,000. Further studies should consider more variety of the functional forms
of the event-specific baseline hazards, larger sets of covariates, larger sample sizes,
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1420 Huszti et al.

and more complex models for transitions between k > 3 states. Still, we believe that
many empirical findings reported in this article will prove quite robust with respect
to the changes in the simulation design and in the values of the relevant design
parameters.

In conclusion, our simulation study provided some new insights into the
different methodological issues related to analyzing prognostic studies involving
multiple events and, therefore, may provide some guidance for end-users of the
methods we considered, as well as stimulate further statistical research on refining
these methods.
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